THE UNIVERSITY of LIVERPOOL

SEPTEMBER 2006 EXAMINATIONS

Bachelor of Engineering : Foundation Year Bachelor of Science : Foundation Year

MATHEMATICAL METHODS

TIME ALLOWED :
Three Hours

INSTRUCTIONS TO CANDIDATES

You may attempt all questions. All answers to
Section A and the best THREE answers to Section B will be taken into account.
Numerical answers should be given correct to four places of decimals.

THE UNIVERSITY of LIVERPOOL

SECTION A

1. Determine the degree measure of the angle $\alpha=13 \pi / 6$ radians.

The formula for $\tan (A+B)$ states that

$$
\tan (A+B)=\frac{\tan (A)+\tan (B)}{1-\tan (A) \tan (B)} .
$$

Using this formula or otherwise find the exact value for $\tan (\alpha)$, without using tables or a calculator. (Show all your working.)
Hence determine all the angles θ, in the range $[0,2 \pi]$ satisfying $\tan (\theta)=\tan (\alpha)$. Your answers should be expressed in radian measure.
2. Sketch the graph of $y=\cos (x)$ in the range $-270^{\circ} \leq x \leq 270^{\circ}$. Determine numerically the solutions of $\cos (x)=-1 / 4$ in the same range. You may express your answers in degrees or radians.
3. Use logarithms to find the value of x which satisfies the following equation.

$$
\begin{equation*}
5^{x+1}=7^{x-1} . \tag{7marks}
\end{equation*}
$$

4. You are given the values of $\log _{10}(12)=1.079181$ and $\log _{10}(4)=0.602060$, correct to six decimal places. Obtain the values of the following

$$
\log _{10}(48), \quad \log _{10}(3), \quad \log _{10}(64)
$$

without using tables or a calculator, correct to four decimal places. (Show all your working.)
5. Write down the first five rows of Pascal's triangle. Hence or otherwise find the coefficient of x^{6} in the expansion of

$$
\left(x^{2}-2\right)^{4}
$$

[6 marks]
\qquad M013

THE UNIVERSITY of LIVERPOOL

6. Let $q(x)$ be the quadratic function $q(x)=2 x^{2}-7 x+3$. Determine the zeros of $q(x)$ and the position and nature of its turning point. Hence sketch the graph of $q(x)$.
7. Express the rational function $f(x)$ in partial fractions, where

$$
f(x)=\frac{6}{(2 x+1)(x+3)}
$$

8. Express the complex number

$$
z=\frac{3+4 i}{6+2 i}
$$

in the form $z=a+b i$ where a and b are real.
Determine numerically the modulus and argument of z. The argument should, preferably, be expressed in radian measure. Hence, or otherwise, find the modulus and argument of z^{2}.
\qquad

THE UNIVERSITY of LIVERPOOL

SECTION B

9. Given the fact that $\sec ^{2}(\theta)=1+\tan ^{2}(\theta)$, find the values of the angle θ lying in the range $[0, \pi]$ radians, which satisfy the equation

$$
3 \sec ^{2}(\theta)=5+\tan (\theta)
$$

Using the identity $\sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B)$ express $5 \sin (x)+12 \cos (x)$ in the form $C \sin (x+\alpha)$, where $C>0$ and $\alpha \in[0, \pi / 2]$ are constants. Hence solve the equation

$$
5 \sin (x)+12 \cos (x)=\frac{13}{2}
$$

for x in the range $[0,2 \pi]$ radians.
10. (i) On separate diagrams sketch the curves $y=e^{-x}$ for real x, and $y=\log _{e}(x+1)$ for $x>-1$.
(ii) Solve the following equations:

$$
\log _{9}(x)=2, \quad \log _{y}(81)=4 .
$$

[4 marks]
(iii) A farmer estimated the number of badgers N living on his land varied with time t (where t is measured in years) according to the following equation

$$
N=1+\frac{A}{4 e^{-k t}+1},
$$

where A and k are constants. Initially at $t=0$ he counted 10 badgers living on his land. Calculate the value of A. After 3 years he believed this had risen to 31. Calculate k and use its value to estimate how many badgers would be living on the land in five years time.
\qquad .M013

THE UNIVERSITY of LIVERPOOL

11. (i) If α and β are the roots of the equation $2 x^{2}+3 x+3=0$, find the values of a) $\alpha \beta$, b) $\alpha+\beta$, c) $\alpha^{2}+\beta^{2}$ and d) $(\alpha-\beta)^{2}$, without determining the values of α and β individually.
(ii) Plot a table of the values of the following cubic polynomial

$$
p(x)=2 x^{3}-4 x^{2}-\frac{11}{2} x-\frac{3}{2},
$$

for $x=-2,-1,0,1,2,3$ and 4 . Sketch the curve of the polynomial, and find all the roots of $p(x)=0$.
[7 marks]
12. (i) Find the modulus and argument of the complex number $z=\frac{\sqrt{3}}{2}-\frac{1}{2}$ i. Plot z on the Argand diagram. Hence or otherwise plot both z^{2} and $\frac{1}{z}$ on the same diagram.
[10 marks]
(ii) If w is a complex number with modulus one and argument $\frac{\pi}{3}$ calculate both a) $w+z$ and b) $w z$, where $z=\frac{\sqrt{3}}{2}-\frac{1}{2} \mathrm{i}$ as above.
\qquad

