SEPTEMBER 2006 EXAMINATIONS

Bachelor of Engineering : Foundation Year Bachelor of Science : Foundation Year

MATHEMATICAL METHODS

TIME ALLOWED :

Three Hours

INSTRUCTIONS TO CANDIDATES

You may attempt all questions. All answers to Section A and the best THREE answers to Section B will be taken into account. Numerical answers should be given correct to four places of decimals.

SECTION A

1. Determine the degree measure of the angle $\alpha = 13\pi/6$ radians. The formula for $\tan(A+B)$ states that

$$\tan(A+B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}.$$

Using this formula or otherwise find the exact value for $tan(\alpha)$, without using tables or a calculator. (Show all your working.) Hence determine all the angles θ , in the range $[0, 2\pi]$ satisfying $tan(\theta) = tan(\alpha)$. Your answers should be expressed in radian measure. [6 marks]

2. Sketch the graph of y = cos(x) in the range $-270^{\circ} \le x \le 270^{\circ}$. Determine numerically the solutions of cos(x) = -1/4 in the same range. You may express your answers in degrees or radians.

[9 marks]

3. Use logarithms to find the value of x which satisfies the following equation.

$$5^{x+1} = 7^{x-1}$$
.

[7 marks]

4. You are given the values of $\log_{10}(12) = 1.079181$ and $\log_{10}(4) = 0.602060$, correct to six decimal places. Obtain the values of the following

$$\log_{10}(48), \qquad \log_{10}(3), \qquad \log_{10}(64),$$

without using tables or a calculator, correct to four decimal places. (Show all your working.)

[6 marks]

5. Write down the first five rows of Pascal's triangle. Hence or otherwise find the coefficient of x^6 in the expansion of

 $(x^2-2)^4$.

[6 marks]

PAPER CODEM013...... PAGE 2 OF 5 CONTINUED

6. Let q(x) be the quadratic function $q(x) = 2x^2 - 7x + 3$. Determine the zeros of q(x) and the position and nature of its turning point. Hence sketch the graph of q(x).

[7 marks]

7. Express the rational function f(x) in partial fractions, where

$$f(x) = \frac{6}{(2x+1)(x+3)}.$$

[5 marks]

8. Express the complex number

$$z = \frac{3+4i}{6+2i}$$

in the form z = a + bi where a and b are real.

Determine numerically the modulus and argument of z. The argument should, preferably, be expressed in radian measure. Hence, or otherwise, find the modulus and argument of z^2 .

[9 marks]

PAPER CODEM013..... PAGE 3 OF 5 CONTINUED

SECTION B

9. Given the fact that $\sec^2(\theta) = 1 + \tan^2(\theta)$, find the values of the angle θ lying in the range $[0, \pi]$ radians, which satisfy the equation

$$3\sec^2(\theta) = 5 + \tan(\theta).$$
 [7 marks]

Using the identity $\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ express $5\sin(x) + 12\cos(x)$ in the form $C\sin(x+\alpha)$, where C > 0 and $\alpha \in [0, \pi/2]$ are constants. Hence solve the equation

$$5\sin(x) + 12\cos(x) = \frac{13}{2},$$

for x in the range $[0, 2\pi]$ radians.

10. (i) On separate diagrams sketch the curves $y = e^{-x}$ for real x, and $y = \log_{e}(x+1)$ for x > -1.

(ii) Solve the following equations:

$$\log_9(x) = 2$$
, $\log_y(81) = 4$.
[4 marks]

(iii) A farmer estimated the number of badgers N living on his land varied with time t (where t is measured in years) according to the following equation

$$N=1+\frac{A}{4e^{-kt}+1},$$

where *A* and *k* are constants. Initially at t = 0 he counted 10 badgers living on his land. Calculate the value of *A*. After 3 years he believed this had risen to 31. Calculate *k* and use its value to estimate how many badgers would be living on the land in five years time.

[7 marks]

[4 marks]

[8 marks]

11. (i) If α and β are the roots of the equation $2x^2 + 3x + 3 = 0$, find the values of a) $\alpha\beta$, b) $\alpha + \beta$, c) $\alpha^2 + \beta^2$ and d) $(\alpha - \beta)^2$, without determining the values of α and β individually.

[8 marks]

(ii) Plot a table of the values of the following cubic polynomial

$$p(x) = 2x^3 - 4x^2 - \frac{11}{2}x - \frac{3}{2},$$

for x = -2, -1, 0, 1, 2, 3 and 4. Sketch the curve of the polynomial, and find all the roots of p(x) = 0.

[7 marks]

12. (i) Find the modulus and argument of the complex number $z = \frac{\sqrt{3}}{2} - \frac{1}{2}i$. Plot z on the Argand diagram. Hence or otherwise plot both z^2 and $\frac{1}{z}$ on the same diagram.

[10 marks]

(ii) If w is a complex number with modulus one and argument $\frac{\pi}{3}$ calculate both a) w + z and b) wz, where $z = \frac{\sqrt{3}}{2} - \frac{1}{2}i$ as above.

[5 marks]

END