THE UNIVERSITY of LIVERPOOL

JANUARY 2006 EXAMINATIONS

Bachelor of Engineering : Foundation Year Bachelor of Science : Foundation Year

MATHEMATICAL METHODS

TIME ALLOWED :
Three Hours

INSTRUCTIONS TO CANDIDATES

You may attempt all questions. All answers to
Section A and the best THREE answers to Section B will be taken into account.
Numerical answers should be given correct to four places of decimals.

THE UNIVERSITY of LIVERPOOL

SECTION A

1. Determine the radian measure of the angle α of -120°, expressed as a rational multiple of π.
The formula for $\sin (A-B)$ states that

$$
\sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B)
$$

Using this formula or otherwise find the exact value for $\sin (\alpha)$, without using tables or a calculator. (Show all your working.)
Hence determine all the angles θ, in the range $\left[-360^{\circ}, 360^{\circ}\right]$ satisfying $\sin (\theta)=\sin (\alpha)$. Your answers can be expressed in degrees or radians.
2. Sketch the graph of $y=\tan (x)$ in the range $-\pi \leq x \leq \pi$. Determine numerically the solutions of $\tan (x)=2.5$ and $\tan (x)=-2.5$ in the same range.
3. Solve the equation

$$
\log _{e}(4 x)+\log _{e}\left(x^{4}\right)=7 .
$$

4. You are given the values of $\log _{e}(100)=4.605170$ and $\log _{e}(5)=1.609438$, correct to six decimal places. Obtain the values of the following

$$
\log _{e}(500), \quad \log _{e}(20), \quad \log _{e}(25)
$$

without using tables or a calculator, correct to four decimal places. (Show all your working.)
5. Write down the first six rows of Pascal's triangle. Hence or otherwise find the coefficient of x^{4} in the expansion of

$$
(1-4 x)^{5} .
$$

\qquad M013 \qquad

THE UNIVERSITY of LIVERPOOL

6. Let $q(x)$ be the quadratic function $q(x)=4-2 x-x^{2}$. Determine the zeros of $q(x)$ and the position and nature of its turning point. Hence sketch the graph of $q(x)$.
7. Express the rational function $f(x)$ in partial fractions, where

$$
f(x)=\frac{7 x-6}{(x+7)(x-4)}
$$

8. Express the complex number

$$
z=\frac{1+3 i}{3+4 i}
$$

in the form $z=a+b i$ where a and b are real.
Determine numerically the modulus and argument of z. The argument should, preferably, be expressed in radian measure. Hence, or otherwise, find the modulus and argument of z^{2}.
\qquad M013

THE UNIVERSITY of LIVERPOOL

SECTION B

9. Find two values of θ between 0° and 180° satisfying the equation

$$
6 \sin ^{2}(\theta)=4+\cos (\theta)
$$

Using the identity $\sin (A)+\sin (B)=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$ or otherwise, find the range of values of a for which the equation

$$
\sin \left(x+225^{\circ}\right)+\sin \left(x+135^{\circ}\right)=a
$$

has real solutions. For the case $a=1 / \sqrt{2}$, find all the solutions in the interval $0^{0} \leq x \leq 360^{\circ}$.
10. (i) On separate diagrams sketch the curves $y=\frac{1}{3} e^{x}$ for real x, and $y=\log _{e}(x)+2$ for $x>0$.
(ii) Solve the following equations:

$$
\log _{16}(x)=\frac{1}{2}, \quad \log _{y}(121)=2 .
$$

[4 marks]
(iii) A body of mass $m=0.02 \mathrm{~kg}$ falls under gravity through a resistive medium which exerts a resistive force proportional to the body's velocity v. It turns out that after a time t (measured in seconds) v is given by the following equation

$$
v=\frac{m g}{k}-\frac{A}{k} e^{-k t / m},
$$

where g is the acceleration due to gravity (take $g=9.8 \mathrm{~ms}^{-2}$) and k and A are constants. If the body falls initially from rest, show that $A=m g$. As $t \rightarrow \infty$ the body's velocity approaches $10 \mathrm{~ms}^{-1}$. Calculate the value of k and hence show that after 1 second the body is already falling at a speed of approximately $6.25 \mathrm{~ms}^{-1}$.
\qquad

THE UNIVERSITY of LIVERPOOL

11. (i) If α and β are the roots of the equation $3 x^{2}+3 x+2=0$, find the values of a) $\alpha \beta$, b) $\alpha+\beta$, c) $\alpha^{2}+\beta^{2}$ and d) $(\alpha-\beta)^{2}$, without determining the values of α and β individually.
(ii) Plot a table of the values of the following cubic polynomial

$$
p(x)=4 x^{3}-8 x^{2}-7 x+5
$$

for $x=-2,-1,0,1,2,3$ and 4 . Sketch the curve of the polynomial, and find all the roots of $p(x)=0$.
12. (i) A complex number z has modulus one and argument $\pi / 4$. Express each of the following complex numbers in the form $a+b i$ (where a and b are real):

$$
z, z^{2}, z^{3}, \frac{1}{z},
$$

and plot them on the Argand diagram.
(ii) Find the modulus and argument of the complex number w, where

$$
w=\frac{(3+\mathrm{i})(1+\mathrm{i})}{\mathrm{i}} .
$$

\qquad

