JANUARY 2006 EXAMINATIONS

Bachelor of Engineering : Foundation Year Bachelor of Science : Foundation Year

MATHEMATICAL METHODS

TIME ALLOWED :

Three Hours

INSTRUCTIONS TO CANDIDATES

You may attempt all questions. All answers to Section A and the best THREE answers to Section B will be taken into account. Numerical answers should be given correct to four places of decimals.

SECTION A

Determine the radian measure of the angle α of -120°, expressed as a rational multiple of π.
The formula for sin(A-B) states that

$$\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B).$$

Using this formula or otherwise find the exact value for $sin(\alpha)$, without using tables or a calculator. (Show all your working.) Hence determine all the angles θ , in the range $[-360^{\circ}, 360^{\circ}]$ satisfying $sin(\theta) = sin(\alpha)$. Your answers can be expressed in degrees or radians.

[6 marks]

2. Sketch the graph of y = tan(x) in the range $-\pi \le x \le \pi$. Determine numerically the solutions of tan(x) = 2.5 and tan(x) = -2.5 in the same range.

[9 marks]

[7 marks]

3. Solve the equation

$$\log_e(4x) + \log_e(x^4) = 7.$$

4. You are given the values of $\log_e(100) = 4.605170$ and $\log_e(5) = 1.609438$, correct to six decimal places. Obtain the values of the following

 $\log_{e}(500), \qquad \log_{e}(20), \qquad \log_{e}(25),$

without using tables or a calculator, correct to four decimal places. (Show all your working.)

[6 marks]

5. Write down the first six rows of Pascal's triangle. Hence or otherwise find the coefficient of x^4 in the expansion of

 $(1-4x)^5$.

[6 marks]

6. Let q(x) be the quadratic function $q(x) = 4 - 2x - x^2$. Determine the zeros of q(x) and the position and nature of its turning point. Hence sketch the graph of q(x).

[7 marks]

7. Express the rational function f(x) in partial fractions, where

$$f(x) = \frac{7x - 6}{(x + 7)(x - 4)}.$$

[5 marks]

8. Express the complex number

$$z = \frac{1+3i}{3+4i}$$

in the form z = a + bi where *a* and *b* are real. Determine numerically the modulus and argument of *z*. The argument should, preferably, be expressed in radian measure. Hence, or otherwise, find the modulus and argument of z^2 .

[9 marks]

PAPER CODEM013..... PAGE 3 OF 5

CONTINUED

SECTION B

9. Find two values of θ between 0° and 180° satisfying the equation

$$6\sin^2(\theta) = 4 + \cos(\theta).$$
 [7 marks]

Using the identity $\sin(A) + \sin(B) = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ or otherwise, find the range of values of *a* for which the equation

$$\sin(x+225^{\circ})+\sin(x+135^{\circ})=a\,,$$

has real solutions. For the case $a = 1/\sqrt{2}$, find all the solutions in the interval $0^0 \le x \le 360^0$. [8 marks]

10. (i) On separate diagrams sketch the curves $y = \frac{1}{3}e^x$ for real x, and

$$y = \log_e(x) + 2 \text{ for } x > 0.$$

(ii) Solve the following equations:

$$\log_{16}(x) = \frac{1}{2}, \qquad \log_{y}(121) = 2.$$

[4 marks]

(iii) A body of mass m = 0.02 kg falls under gravity through a resistive medium which exerts a resistive force proportional to the body's velocity v. It turns out that after a time t (measured in seconds) v is given by the following equation

$$v=\frac{mg}{k}-\frac{A}{k}e^{-kt/m},$$

where g is the acceleration due to gravity (take $g = 9.8 \text{ms}^{-2}$) and k and A are constants. If the body falls initially from rest, show that A = mg. As $t \to \infty$ the body's velocity approaches 10ms^{-1} . Calculate the value of k and hence show that after 1 second the body is already falling at a speed of approximately 6.25ms^{-1} .

[7 marks]

[4 marks]

11. (i) If α and β are the roots of the equation $3x^2 + 3x + 2 = 0$, find the values of a) $\alpha\beta$, b) $\alpha + \beta$, c) $\alpha^2 + \beta^2$ and d) $(\alpha - \beta)^2$, without determining the values of α and β individually.

[8 marks]

(ii) Plot a table of the values of the following cubic polynomial

$$p(x) = 4x^3 - 8x^2 - 7x + 5,$$

for x = -2, -1, 0, 1, 2, 3 and 4. Sketch the curve of the polynomial, and find all the roots of p(x) = 0.

[7 marks]

12. (i) A complex number z has modulus one and argument $\pi/4$. Express each of the following complex numbers in the form a + bi (where a and b are real):

$$z, z^2, z^3, \frac{1}{z},$$

and plot them on the Argand diagram.

[10 marks]

(ii) Find the modulus and argument of the complex number w, where

$$w = \frac{(3+i)(1+i)}{i}.$$

[5 marks]

END