JANUARY 2007 EXAMINATIONS

Bachelor of Engineering : Foundation Year Bachelor of Science : Foundation Year

MATHEMATICAL METHODS

TIME ALLOWED :

Three Hours

INSTRUCTIONS TO CANDIDATES

You may attempt all questions. All answers to Section A and the best THREE answers to Section B will be taken into account. Numerical answers should be given correct to four places of decimals.

SECTION A

1. If α represents the angle $11\pi/6$ measured in radians, what is the value of α measured in degrees? The formula for $\cos(A-B)$ states that

 $\cos(A-B) = \cos(A)\cos(B) + \sin(A)\sin(B).$

Using this formula or otherwise find the exact value for $\cos(\alpha)$, without using tables or a calculator. (Show all your working.) Hence determine all the angles θ , in the range $[0, 2\pi]$ satisfying $\sin(\theta) = \cos(\alpha)$. Your answers can be expressed in degrees or radians.

[7 marks]

2. Sketch the graph of y = cos(2x) in the range $0^0 \le x \le 360^0$. Determine numerically the solutions of cos(2x) = 0.8 for x in the same range.

[9 marks]

3. Use logarithms to solve the equation $5^{x+1} = 3^{x+2}$, giving x to 4 decimal places.

[6 marks]

4. You are given the values of $\log_{10}(45) = 1.653212$ and $\log_{10}(3) = 0.477121$, correct to six decimal places. Obtain the values of the following

 $\log_{10}(135), \qquad \log_{10}(15), \qquad \log_{10}(27),$

without using tables or a calculator, correct to four decimal places. (Show all your working.)

[6 marks]

5. Write down the first six rows of Pascal's triangle. Hence or otherwise find the coefficient of x^3 in the expansion of

 $(2+3x)^5$.

[6 marks]

PAPER CODEM013...... PAGE 2 OF 5 CONTINUED

6. Let q(x) be the quadratic function $q(x) = 2x^2 - 7x - 4$. Determine the zeros of q(x) and the position and nature of its turning point. Hence sketch the graph of q(x).

[7 marks]

7. Express the rational function f(x) in partial fractions, where

$$f(x) = \frac{3x}{(x-3)(x+8)}.$$

[5 marks]

8. Express the complex number

$$z = \frac{2 - i}{3 - 2i}$$

in the form z = a + bi where *a* and *b* are real. Determine numerically the modulus and argument of *z*. The argument should, preferably, be expressed in radian measure. Hence, or otherwise, find the modulus and argument of z^2 .

[9 marks]

PAPER CODEM013..... PAGE 3 OF 5 CON

CONTINUED

SECTION B

9. Find two values of θ between 0 and $\pi/2$ radians satisfying the equation

$$8\cos^2(\theta) = 11 - 10\sin(\theta).$$
 [7 marks]

Using the identity sin(2A) = 2sin(A)cos(A) or otherwise, find *all* the solutions for the angle A in the range $0^0 \le A \le 360^0$ which satisfy the following equation

$$\sin(2A)+\sin^2(A)=0.$$

[8 marks]

10. (i) On separate diagrams sketch the curves $y = 2e^{-x}$ for real *x*, and $y = \log_e(x) - 1$ for x > 0.

(ii) Solve the following equations:

$$\log_{27}(x) = \frac{1}{3}, \qquad \log_{y}(1024) = 10.$$

[4 marks]

(iii) A capacitor is charged through a resistor R (ohms) by connecting it and the resistor in series to an electrical cell. The total charge Q that accumulates on the capacitor after a time t (measured in seconds) is given by the following equation

$$Q=Q_0\left(1-\frac{3}{4}e^{-t/RC}\right),$$

where *C* is the capacitance of the capacitor (in Farads) and Q_0 is a constant. What was the initial charge on the capacitor before it was connected to the circuit? If R = 100 ohms, and after 5 seconds the charge on the capacitor has risen to $Q = 3Q_0/4$ coulombs, what is the value of *C*? How long will it take for the charge on the capacitor to reach a value of 0.99 Q_0 coulombs?

[7 marks]

PAPER CODEM013..... PAGE 4 OF 5 CONTINUED

[4 marks]

11. (i) If α and β are the roots of the equation $-2x^2 - 5x + 1 = 0$, find the values of a) $\alpha\beta$, b) $\alpha + \beta$, c) $\alpha^2 + \beta^2$ and d) $(\alpha - \beta)^2$, without determining the values of α and β individually.

[8 marks]

(ii) Plot a table of the values of the following cubic polynomial

$$p(x) = -4x^3 + 8x^2 + 11x - 15,$$

for x = -3, -2, -1, 0, 1, 2, and 3. Sketch the curve of the polynomial, and find all the roots of p(x) = 0.

[7 marks]

12. (i) A complex number z has modulus one and argument $\pi/3$. Express each of the following complex numbers in the form a + bi (where a and b are real):

$$z, z^2, z^3, \frac{1}{z},$$

and plot them on the Argand diagram.

[10 marks]

(ii) If w = 3 + 2i is a root of the quadratic equation

$$2iw^2 + (i - z)w + 3 - 10i = 0,$$

calculate the value of the unknown complex number z in the form a+ib.

[5 marks]

PAPER CODE M013..... PAGE 5 OF 5

END