THE UNIVERSITY of LIVERPOOL

JANUARY 2007 EXAMINATIONS

Bachelor of Engineering : Foundation Year Bachelor of Science : Foundation Year

MATHEMATICAL METHODS

TIME ALLOWED :
Three Hours

INSTRUCTIONS TO CANDIDATES

You may attempt all questions. All answers to
Section A and the best THREE answers to Section B will be taken into account.
Numerical answers should be given correct to four places of decimals.

THE UNIVERSITY of LIVERPOOL

SECTION A

1. If α represents the angle $11 \pi / 6$ measured in radians, what is the value of α measured in degrees?
The formula for $\cos (A-B)$ states that

$$
\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B) .
$$

Using this formula or otherwise find the exact value for $\cos (\alpha)$, without using tables or a calculator. (Show all your working.) Hence determine all the angles θ, in the range [$0,2 \pi$] satisfying $\sin (\theta)=\cos (\alpha)$. Your answers can be expressed in degrees or radians.
2. Sketch the graph of $y=\cos (2 x)$ in the range $0^{\circ} \leq x \leq 360^{\circ}$. Determine numerically the solutions of $\cos (2 x)=0.8$ for x in the same range.
3. Use logarithms to solve the equation $5^{x+1}=3^{x+2}$, giving x to 4 decimal places.
4. You are given the values of $\log _{10}(45)=1.653212$ and $\log _{10}(3)=0.477121$, correct to six decimal places. Obtain the values of the following

$$
\log _{10}(135), \quad \log _{10}(15), \quad \log _{10}(27)
$$

without using tables or a calculator, correct to four decimal places. (Show all your working.)
5. Write down the first six rows of Pascal's triangle. Hence or otherwise find the coefficient of x^{3} in the expansion of

$$
(2+3 x)^{5} .
$$

\qquad M013 \qquad

THE UNIVERSITY of LIVERPOOL

6. Let $q(x)$ be the quadratic function $q(x)=2 x^{2}-7 x-4$. Determine the zeros of $q(x)$ and the position and nature of its turning point. Hence sketch the graph of $q(x)$.
[7 marks]
7. Express the rational function $f(x)$ in partial fractions, where

$$
f(x)=\frac{3 x}{(x-3)(x+8)} .
$$

8. Express the complex number

$$
z=\frac{2-\mathrm{i}}{3-2 \mathrm{i}}
$$

in the form $z=a+b$ i where a and b are real.
Determine numerically the modulus and argument of z. The argument should, preferably, be expressed in radian measure. Hence, or otherwise, find the modulus and argument of z^{2}.
\qquad

THE UNIVERSITY of LIVERPOOL

SECTION B

9. Find two values of θ between 0 and $\pi / 2$ radians satisfying the equation

$$
8 \cos ^{2}(\theta)=11-10 \sin (\theta) .
$$

Using the identity $\sin (2 A)=2 \sin (A) \cos (A)$ or otherwise, find all the solutions for the angle A in the range $0^{\circ} \leq A \leq 360^{\circ}$ which satisfy the following equation

$$
\sin (2 A)+\sin ^{2}(A)=0
$$

10. (i) On separate diagrams sketch the curves $y=2 e^{-x}$ for real x, and $y=\log _{e}(x)-1$ for $x>0$.
(ii) Solve the following equations:

$$
\log _{27}(x)=\frac{1}{3}, \quad \log _{y}(1024)=10
$$

(iii) A capacitor is charged through a resistor R (ohms) by connecting it and the resistor in series to an electrical cell. The total charge Q that accumulates on the capacitor after a time t (measured in seconds) is given by the following equation

$$
Q=Q_{0}\left(1-\frac{3}{4} e^{-t / R C}\right),
$$

where C is the capacitance of the capacitor (in Farads) and Q_{0} is a constant. What was the initial charge on the capacitor before it was connected to the circuit? If $R=100$ ohms, and after 5 seconds the charge on the capacitor has risen to $Q=3 Q_{0} / 4$ coulombs, what is the value of C ? How long will it take for the charge on the capacitor to reach a value of $0.99 Q_{0}$ coulombs?
\qquad .M013.

THE UNIVERSITY of LIVERPOOL

11. (i) If α and β are the roots of the equation $-2 x^{2}-5 x+1=0$, find the values of a) $\alpha \beta$, b) $\alpha+\beta$, c) $\alpha^{2}+\beta^{2}$ and d) $(\alpha-\beta)^{2}$, without determining the values of α and β individually.
(ii) Plot a table of the values of the following cubic polynomial

$$
p(x)=-4 x^{3}+8 x^{2}+11 x-15
$$

for $x=-3,-2,-1,0,1,2$, and 3 . Sketch the curve of the polynomial, and find all the roots of $p(x)=0$.
12. (i) A complex number z has modulus one and argument $\pi / 3$. Express each of the following complex numbers in the form $a+b \mathrm{i}$ (where a and b are real):

$$
z, z^{2}, z^{3}, \frac{1}{z},
$$

and plot them on the Argand diagram.
(ii) If $w=3+2 i$ is a root of the quadratic equation

$$
2 \mathrm{i} w^{2}+(\mathrm{i}-z) w+3-10 \mathrm{i}=0,
$$

calculate the value of the unknown complex number z in the form $a+\mathrm{i} b$.
\qquad

