PAPER CODE NO. MATH012

SUMMER 2003 EXAMINATIONS

Bachelor of Engineering: Foundation Year Bachelor of Science: Foundation Year Bachelor of Science: Year 1

Bachelor of Science: Year 1
Bachelor of Science: Year 2

VECTORS AND INTRODUCTION TO STATISTICS

 $TIME\ ALLOWED: Three\ Hours$

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in Section A and THREE questions from Section B. The total of the marks available on Section A is 55.

SECTION A

- 1. Let ABCD be a parallelogram. Given that $\overrightarrow{AB} = \mathbf{u}$ and $\overrightarrow{BC} = \mathbf{v}$, express each of the following in terms of \mathbf{u} and \mathbf{v} :
 - (a) \overrightarrow{CD}
 - (b) \overrightarrow{BD}
 - (c) \overrightarrow{BP} , where P is the mid-point of \overrightarrow{CD} .

[4 marks]

2. The points P, Q and R have Cartesian coordinates (2,3,1), (3,1,-1) and (4,2,3) respectively, where lengths are measured in metres.

Find:

- (a) the lengths of the sides of triangle PQR, correct to the nearest centimetre
- (b) $\overrightarrow{PQ} \cdot \overrightarrow{PR}$
- (c) the angles of the triangle PQR in degrees
- (d) the coordinates of the point S such that PQSR is a parallelogram.

[12 marks]

3. Let $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{v} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$ where \mathbf{i} , \mathbf{j} and \mathbf{k} are mutually orthogonal unit vectors.

2 of 7

- (a) Find $\mathbf{u} + 2\mathbf{v}$ and $\mathbf{u} 2\mathbf{v}$.
- (b) Find $(\mathbf{u} + 2\mathbf{v}) \cdot \mathbf{u}$ and $(\mathbf{u} + 2\mathbf{v}) \cdot (\mathbf{u} 2\mathbf{v})$.
- (c) A unit vector parallel to $\mathbf{u} \times \mathbf{v}$.
- (d) $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} \mathbf{v})$.

[9 marks]

- 4. The points A and B have Cartesian coordinates (1,2,3) and (2,-1,-1) respectively. Find:
 - (a) \overrightarrow{AB}
 - (b) the vector equation of the line through A and B
 - (c) the coordinates of the point at 2/3 of the distance along the line from A to B.

[5 marks]

5. Let O be a fixed origin and let \mathbf{i} , \mathbf{j} and \mathbf{k} be constant, mutually orthogonal unit vectors. A particle P moves so that its position vector \mathbf{r} with respect to O at time t is given by

$$\mathbf{r} = t^2 \mathbf{i} + (t-1)\mathbf{j} + te^t \mathbf{k}$$

where t is measured in seconds and distances are measured in metres. Find:

- (a) the position of P at time t = 0 seconds
- (b) the velocity of P at time t seconds
- (c) the speed of P at t=2 seconds, to the nearest cm/sec
- (d) the acceleration of P at t = 0.

[7 marks]

- 6. A ferry boat sets out from an origin O on the bank to cross a river flowing with constant velocity $\mathbf{w} = 3\mathbf{i} \text{ km/hr}$, where \mathbf{i} is a unit vector parallel to the river. The ferry boat travels at constant velocity $\mathbf{u} = \mathbf{i} + 2\mathbf{j} \text{ km/hr}$ relative to the river. Here \mathbf{j} is a unit vector orthogonal to the river flow.
 - (a) Give an expression for the velocity \mathbf{v} of the ferry relative to the land.
 - (b) Hence write down an expression for the position vector of the ferry at time t hours.
 - (c) If the river is 0.5km wide, find the time in minutes at which the ferry reaches the opposite side.
 - (d) Find the position vector of the point P at which the ferry reaches the opposite side, giving distances to the nearest metre.

[7 marks]

7. Vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are each non-zero, none is parallel to any other, but are such that

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 0$$
.

Use the geometrical interpretation of the triple scalar product to deduce what you can about these three vectors, clearly stating your reasons.

[4 marks]

8. What does the conditional probability P(X|Y) of events X and Y mean?

The probability of a sunny day in Liverpool is 0.1. The probability of a sunny day in Athens is 0.9. Businessman X spends each day of the year in either Liverpool or Athens. If X is twice as likely to be in Liverpool as in Athens on any given day, what is the probability that X will have sun on a given day?

[7 marks]

SECTION B

- 9. The four distinct points A, B, C and D are non-collinear and such that $\overrightarrow{AB} = \mathbf{u}$, $\overrightarrow{BC} = \mathbf{v}$ and $\overrightarrow{CD} = \mathbf{w}$.
 - (a) Find an expression for \overrightarrow{DA} in terms of \mathbf{u} , \mathbf{v} and \mathbf{w} .
 - (b) What condition should be satisfied by \mathbf{u} , \mathbf{v} and \mathbf{w} in order that ABCD should be a parallelogram with AB and DC as opposite sides?
 - (c) Suppose that, in terms of mutually orthogonal unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} ,

$$\mathbf{u} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$$
, $\mathbf{v} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$ and $\mathbf{w} = -2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$.

- (i) Show that ABCD is not a parallelogram.
- (ii) Using the vectors \mathbf{u} and \mathbf{v} , show that a unit vector normal to the plane containing the points A, B and C is given by

$$\mathbf{n} = \frac{-3\mathbf{i} - 2\mathbf{j}}{\sqrt{13}}.$$

(iii) Show by explicitly calculating the scalar products that

$$\mathbf{n} \cdot \mathbf{u} = 0$$
 and $\mathbf{n} \cdot \mathbf{v} = 0$.

(iv) Show that A, B, C and D lie in the same plane.

[15 marks]

10. Suppose that the line \mathcal{L}_1 has vector equation

$$\mathbf{r} = \mathbf{i} + \mathbf{j} + \lambda(-\mathbf{i} + \mathbf{j})$$

and that the line \mathcal{L}_2 has vector equation

$$\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \mu(-2\mathbf{i} + \mathbf{j} - \mathbf{k})$$

where \mathbf{i} , \mathbf{j} and \mathbf{k} are unit vectors parallel to the coordinate axes Ox, Oy and Oz.

- (a) Write down the coordinates of any two points on the line \mathcal{L}_1 .
- (b) Determine two unit vectors \mathbf{u}_1 and \mathbf{u}_2 which are respectively parallel to the lines \mathcal{L}_1 and \mathcal{L}_2 .
- (c) Show that the angle between the lines is 30 degrees.
- (d) Show that the lines intersect and find the coordinates of the point of intersection.

[15 marks]

11. The vectors

$$\mathbf{n}_1 = \mathbf{i} - 2\mathbf{k}$$
 and $\mathbf{n}_2 = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}$

are respectively normal to the planes Π_1 and Π_2 . Here **i**, **j** and **k** are the usual unit vectors parallel to the x, y and z axes respectively. The points P and Q with position vectors

$$\mathbf{p} = \mathbf{i} - \mathbf{j} + \mathbf{k}$$
 and $\mathbf{q} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$

lie on Π_1 and Π_2 respectively.

(a) Show that the scalar equations of Π_1 and Π_2 can be written as

$$x - 2z = -1$$
 and $2x + y - 3z = -3$.

- (b) Find the acute angle in degrees between the normals to the planes Π_1 and Π_2
- (c) Show that the vector equation of the line \mathcal{L} of intersection of the planes Π_1 and Π_2 can be written in the form

$$\mathbf{r} = -\mathbf{i} - \mathbf{j} + \lambda(2\mathbf{i} - \mathbf{j} + \mathbf{k})$$
.

(d) Verify that the direction of this line is perpendicular to \mathbf{n}_1 and \mathbf{n}_2 .

[15 marks]

12. Define the mean, mode and median of a set of values.

12 students sit an exam with marks given by

3, 2, 5, 10, 4, 1, 15, 10, 3, 10, 12, 9.

- (a) Draw a bar chart to show the number of students with marks in the ranges 0-5, 6-10 and 11-15.
- (b) What is the frequency and relative frequency of a result of 3?
- (c) What is the mean mark?
- (d) What is the mode and median?
- (e) What is the standard deviation of the marks?

[15 marks]