1 (a) $\frac{x^{5}\left(y^{2} z^{3}\right)^{2}}{x^{-2} y^{4} z^{5}}=\frac{x^{5} y^{4} z^{6}}{x^{-2} y^{4} z^{5}}=x^{7} z$
(b) $\frac{b^{2}-9}{b^{2}-6 b+9}=\frac{(b-3)(b+3)}{(b-3)^{2}}=\frac{b+3}{b-3}$.
$2 \quad \frac{3}{x^{2}+3 x}+\frac{1}{x+3}=\frac{3+x}{x(x+3)}=\frac{1}{x}$
[4 marks]

3 (a) $x^{2}-x-20=(x-5)(x+4)$ so solutions are $x=5, x=-4$.
[2 marks]
(b) Using the quadratic formula $x=\frac{13 \pm \sqrt{169-4 \times 10 \times(-3)}}{6}=\frac{13 \pm 17}{6}=5$ or $\frac{2}{3}$

4 (a) $y=3 x-6$ represents a straight line with slope 3 meeting the y-axis at $y=-6$.
(b) $y=x^{2}+4 x-5$ is a quadratic curve, which is U -shaped, crossing the y-axis at $y=-5$ and the x-axis at $x=1, x=-5$. The curve is symmetric about the line $x=-4 / 2=-2$. The bottom point is at $x=-2, y=-9$.
[3 marks]
(c) $y=\left|x^{2}+4 x-5\right|$ is given from (b) by reflecting the part below the x-axis in the x-axis.
[3 marks]
5 Put $y=\frac{1+3 x}{2 x-5}$, and solve for x in terms of $y=f(x)$. Then $(2 x-5) y=1+3 x$ so $2 x y-5 y=1+3 x$, giving $x(2 y-3)=1+5 y$.

Thus $x=f^{-1}(y)=\frac{1+5 y}{2 y-3}$ and so $f^{-1}(x)=\frac{1+5 x}{2 x-3}$.
[3 marks]

6 (a) Either use the formula $a \frac{1-r^{n}}{1-r}$ with $r=3, a=3, n=6$, giving $3 \times \frac{3^{6}-1}{3-1}=1092$, or simply add up the 6 terms.
(b) The formula is $\frac{a}{1-r}$.
[1 marks]
Here $a=\frac{5}{8}, r=\frac{5}{8}$, giving the sum as $\frac{\frac{5}{8}}{1-\frac{5}{8}}=\frac{\frac{5}{8}}{\frac{3}{8}}=\frac{5}{3}$.
[2 marks]

7 (a) $\lim _{n \rightarrow \infty} \frac{2-3 n+5 n^{2}}{5-2 n^{2}}=\lim _{n \rightarrow \infty} \frac{\frac{2}{n^{2}}-\frac{3}{n}+5}{\frac{5}{n^{2}}-2} \rightarrow \frac{5}{-2}=-\frac{5}{2}$ as $n \rightarrow \infty$.
[2 marks]
(b) Putting $x=-2$ in the bottom of the fraction gives 0 , as also in the top. Factorise to write

$$
\frac{x^{2}-x-6}{x^{2}-4}=\frac{(x-3)(x+2)}{(x-2)(x+2)}=\frac{x-3}{x-2}
$$

Now put $x=-2$ to get the limit $\frac{5}{4}$.

8 (a) Put $u=3 x-5$. Then $y=(3 x-5)^{5}=u^{5}$ so

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=5 u^{4} \times 3=15(3 x-5)^{4}
$$

(b) Put $u=x^{3}+2$. Then $y=\left(x^{3}+2\right)^{\frac{4}{3}}=u^{\frac{4}{3}}$ and

$$
\frac{d y}{d x}=\frac{4}{3} u^{\frac{1}{3}} \times \frac{d u}{d x}=\frac{4}{3} u^{\frac{1}{3}} \times 3 x^{2}=4 x^{2}\left(x^{3}+2\right)^{\frac{1}{3}} .
$$

(c) $y=x^{6} \sin x=u v$ with $u=x^{6}, v=\sin x$.

$$
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}=x^{6} \cos x+6 x^{5} \sin x .
$$

9 The slope of the tangent is the value of $\frac{d y}{d x}$ at $x=1$. Now $\frac{d y}{d x}=6 x^{2}$, so the slope is 6. When $x=1$ we have $y=-3$, so the tangent line has equation $y+3=6(x-1)$, giving $y=6 x-9$.

10 (a) $\int\left(\cos x+3 x^{4}-2\right) d x=\int \cos x d x+3 \int x^{4} d x-2 \int 1 d x=\sin x+\frac{3}{5} x^{5}-2 x+C$
(b) $\int e^{6 x} d x=\frac{1}{6} e^{6 x}+C$.

11 (a) $\int_{0}^{\frac{\pi}{6}} \sin 6 x d x=\left[-\frac{1}{6} \cos 6 x\right]_{0}^{\frac{\pi}{6}}=-\frac{1}{6} \cos \pi+\frac{1}{6} \cos 0=\frac{1}{3}$.
(b) Substitute $u=4 x-3$ so that $d u=4 d x$. Then
$I=\int_{1}^{2} \frac{4}{4 x-3} d x=\int_{x=1}^{x=2} \frac{1}{u} d u=\int_{u=1}^{u=5} \frac{1}{u} d u=[\ln u]_{1}^{5}=\ln 5-\ln 1=\ln 5(=1.61)$.

12 (i) Differentiate the LHS to get

$$
3 \times 4 x^{3}+2\left(x^{2} \frac{d y}{d x}+2 x y\right)-3 y^{2} \frac{d y}{d x}
$$

[4 marks]
The RHS has derivative 0 giving the equation $12 x^{3}+2 x^{2} \frac{d y}{d x}+4 x y-3 y^{2} \frac{d y}{d x}=0$. [1 marks]
Then $\left(2 x^{2}-3 y^{2}\right) \frac{d y}{d x}=-12 x^{3}-4 x y \quad$ so $\quad \frac{d y}{d x}=\frac{12 x^{3}+4 x y}{3 y^{2}-2 x^{2}}$.
[2 marks]
(ii) The slope of the tangent line when $x=1, y=-1$ is then $\frac{12-4}{3-2}=8$ and the line has equation $y+1=8(x-1)$, so that $y=8 x-9$.
[4 marks]
(iii) If this line meets the curve $y=x^{2}+25$ at a point with the horizontal coordinate x, then $x^{2}+25=8 x-9$, giving the quadratic equation $x^{2}-8 x+16=0$. The only solution is $x=4$ so the line and the curve meet in exactly one point.
[4 marks]

13 (a) Put $u=2-\cos x$. Then $y=\ln (2-\cos x)=\ln u$, so

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\frac{1}{u} \times(\sin x)=\frac{\sin x}{2-\cos x}
$$

[3 marks]
(b) $y=e^{2 x+3}(3 x-1)=u v$ with $u=e^{2 x+3}, v=3 x-1$.

$$
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}=e^{2 x+3} \times 3+(3 x-1) \times 2 e^{2 x+3}=e^{2 x+3}(6 x+1) .
$$

[4 marks]
(c) In $u=\sin ^{3} x$, put $w=\sin x$. Then $u=w^{3}$. Hence $\frac{d u}{d x}=\frac{d u}{d w} \times \frac{d w}{d x}=3 w^{2} \times \cos x=$ $3 \sin ^{2} x \cos x$. Therefore $\frac{d}{d x}\left(\sin ^{3} x-2 x^{5}+4\right)=3 \sin ^{2} x \cos x-10 x^{4}$.
(d) Put $u=\sin ^{3} x$ and $w=\sin x$. Then $u=w^{3}$ and $\frac{d u}{d x}=\frac{d u}{d w} \times \frac{d w}{d x}=3 w^{2} \times(\cos x)=$ $3 \sin ^{2} x \cos x$. Setting also $v=2 x^{2}-3$, we have

$$
\begin{gathered}
\frac{d}{d x} \frac{\sin ^{3} x}{2 x^{2}-3}=\frac{d}{d x} \frac{u}{v}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
=\frac{\left(2 x^{2}-3\right) \times 3 \sin ^{2} x \cos x-\sin ^{3} x \times 4 x}{\left(2 x^{2}-3\right)^{2}}
\end{gathered}
$$

14 (i) The stationary points occur where $f^{\prime}(x)=0$ and the inflection points where $f^{\prime \prime}(x)=0$. Now $f^{\prime}(x)=3 x^{2}+2 x-2$ and $f^{\prime \prime}(x)=6 x+2$.

The inflection point occurs where $x=-\frac{1}{3}=0.33$ and $f(x)=-\frac{20}{27}=-0.74$.
[1 marks]
The stationary points are given by the quadratic formula as $x=\frac{-2 \pm \sqrt{4+24}}{6}=$ $\frac{-1 \pm \sqrt{7}}{3}=0.55$ or -1.22 . These are respectively a local minimum, where $f^{\prime \prime}(x)>0$, and a local maximum, where $f^{\prime \prime}(x)<0$.

The corresponding values of $f(x)$ are -0.63 and 2.11.
[2 marks]
(ii) The curve $y=x^{3}+x^{2}-2 x$ crosses the x-axis when $x^{3}+x^{2}-2 x=0$. This happens when $x=0$ or when $x^{2}+x-2=0$, giving $x=-2$ or $x=1$ as well. [2 marks]
(iii) Using the information from (a) and (b), sketch the curve $y=x^{3}+x^{2}-2 x$.
[3 marks]
(iv) The total area bounded by the curve and the x-axis is made up of two pieces, one between $x=-2$ and $x=0$, and the other between $x=0$ and $x=1$. These are found as $\left|\int_{-2}^{0} f(x) d x\right|$ and $\left|\int_{0}^{1} f(x) d x\right|$. Now $\int f(x) d x=\int\left(x^{3}+x^{2}-2 x\right) d x=\frac{x^{4}}{4}+\frac{1}{3} x^{3}-x^{2}$, giving the first area as $|4-8 / 3-4|=8 / 3$ and the second as $|1 / 4+1 / 3-1|=5 / 12$ making a total of $37 / 12=3.08$.

15 (a) Substitute $u=x^{4}+3$. Then $d u=4 x^{3} d x$, so

$$
I=\int x^{3} \sin \left(x^{4}+3\right) d x=\int \frac{1}{4} \sin u d u=-\frac{1}{4} \cos u+C=-\frac{1}{4} \cos \left(x^{4}+3\right)+C .
$$

[4 marks]
(b) Substitute $t=\tan x$. Then $d t=\sec ^{2} x d x$, so

$$
I=\int \tan ^{5} x \sec ^{2} x d x=\int t^{5} d t=\frac{t^{6}}{6}+C=\frac{1}{6} \tan ^{6} x+C
$$

[4 marks]
(c) Substitute $x=2 \sin t$. Then $d x=2 \cos t d t$. Therefore

$$
I=\int_{0}^{1} \frac{d x}{\sqrt{4-x^{2}}}=\int_{x=0}^{x=1} \frac{2 \cos t}{\sqrt{4-4 \sin ^{2} t}} d t=\int_{x=0}^{x=1} \frac{2 \cos t}{\sqrt{4 \cos ^{2} t}} d t=\int_{x=0}^{x=1} d t=[t]_{x=0}^{x=1}
$$

Now when $x=0$ we have $t=0$ and when $x=1$ we have $1=2 \sin t$ so that $\sin t=\frac{1}{2}$ and $t=\frac{\pi}{6}$. Consequently $I=[t]_{t=0}^{t=\pi / 6}=\left(\frac{\pi}{6}-0\right)=0.52$.
[7 marks]

