1. (a) $\frac{a^{9} b^{-3} c^{8}}{a^{7}\left(b c^{2}\right)^{4}}=\frac{a^{9} b^{-3} c^{8}}{a^{7} b^{4} c^{8}}=\frac{a^{2}}{b^{7}}$
(b) $\frac{16 x^{2}-1}{16 x^{2}+8 x+1}=\frac{(4 x-1)(4 x+1)}{(4 x+1)^{2}}=\frac{4 x-1}{4 x+1}$.
2. $\frac{1}{y-7}-\frac{7}{y^{2}-7 y}=\frac{y-7}{y(y-7)}=\frac{1}{y}$
3. (a) $x^{2}-x-72=(x-9)(x+8)$ so solutions are $x=9, x=-8$.
(b) Using the quadratic formula $x=\frac{2 \pm \sqrt{4-4 \times 8 \times(-21)}}{16}=\frac{2 \pm 26}{16}=\frac{7}{4}$ or $-\frac{3}{2}$
4. (a) $y=3 x-6$ represents a straight line with slope 3 meeting the y-axis at $y=-6$.
(b) $y=x^{2}+6 x+8$ is a quadratic curve, which is U-shaped, crossing the y-axis at $y=8$ and the x-axis at $x=-2, x=-4$. The curve is symmetric about the line $x=-6 / 2=-3$. The vertex is at $x=-3, y=-1$.
(c) $y=\left|x^{2}+6 x+8\right|$ is given from (b) by reflecting the part below the x-axis in the x-axis.
5. Put $y=\frac{2 x+7}{1-3 x}$, and solve for x in terms of $y=f(x)$. Then $y(1-3 x)=2 x+7$ so $y-3 x y=2 x+7$, giving $x(3 y+2)=y-7$.
Thus $x=f^{-1}(y)=\frac{y-7}{3 y+2}$ and so $f^{-1}(x)=\frac{x-7}{3 x+2}$.
6. (a) Either use the formula $a \frac{1-r^{n}}{1-r}$ with $r=-5, a=-5, n=5$, giving $-5 \times \frac{(-5)^{5}-1}{-5-1}=$ -2605 or simply add up the 5 terms.
(b) The formula is $\frac{a}{1-r}$.

Here $a=\frac{7}{10}, r=\frac{7}{10}$, giving the sum as $\frac{\frac{7}{10}}{1-\frac{7}{10}}=\frac{\frac{7}{10}}{\frac{3}{10}}=\frac{7}{3}$.
7. (a) $\lim _{n \rightarrow \infty} \frac{2 n^{2}-7 n}{5 n^{2}+6 n-1}=\lim _{n \rightarrow \infty} \frac{2-\frac{7}{n}}{5+\frac{6}{n}-\frac{1}{n^{2}}} \rightarrow \frac{2}{5}$ as $n \rightarrow \infty$.
(b) Putting $x=4$ in the bottom of the fraction gives 0 , as also in the top. Factorise to write

$$
\frac{x^{2}-x-12}{x^{2}-16}=\frac{(x-4)(x+3)}{(x-4)(x+4)}=\frac{x+3}{x+4}
$$

Now put $x=4$ to get the limit $\frac{7}{8}$.
8. (a) Put $u=3 x-8$. Then $y=(3 x-8)^{7}=u^{7}$ so

$$
\begin{equation*}
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=7 u^{6} \times 3=21(3 x-8)^{6} . \tag{2}
\end{equation*}
$$

(b) Put $u=x^{4}+3$. Then $y=\left(x^{4}+3\right)^{\frac{5}{4}}=u^{\frac{5}{4}}$ and

$$
\begin{equation*}
\frac{d y}{d x}=\frac{5}{4} u^{\frac{1}{4}} \times \frac{d u}{d x}=\frac{5}{4} u^{\frac{1}{4}} \times 4 x^{3}=5 x^{3}\left(x^{4}+3\right)^{\frac{1}{4}} . \tag{3}
\end{equation*}
$$

(c) $y=x^{8} \cos x=u v$ with $u=x^{8}, v=\cos x$.

$$
\begin{equation*}
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}=x^{8}(-\sin x)+8 x^{7} \cos x=-x^{8} \sin x+8 x^{7} \cos x \tag{3}
\end{equation*}
$$

9. The slope of the tangent is the value of $\frac{d y}{d x}$ at $x=-1$. Now $\frac{d y}{d x}=12 x^{3}$, so the slope is -12 . When $x=-1$ we have $y=5$, so the tangent line has equation $y-5=-12(x+1)$, giving $y=-12 x-7$.
10. (a) $\int\left(6-3 x^{5}-\sin x\right) d x=6 \int 1 d x-3 \int x^{5} d x-\int \sin x d x=6 x-\frac{1}{2} x^{6}+\cos x+C$ [4]
(b) $\int e^{-5 x} d x=\frac{1}{-5} e^{-5 x}+C=-\frac{1}{5} e^{-5 x}+C$.
11. (a) $\int_{0}^{\pi / 14} \cos 7 x d x=\left[\frac{1}{7} \sin 7 x\right]_{0}^{\pi / 14}=\frac{1}{7} \sin (\pi / 2)-\frac{1}{7} \sin 0=\frac{1}{7}$.
(b) Substitute $u=5 x-14$ so that $d u=5 d x$. Then

$$
\begin{equation*}
I=\int_{3}^{6} \frac{5}{5 x-14} d x=\int_{x=3}^{x=6} \frac{1}{u} d u=\int_{u=1}^{u=16} \frac{1}{u} d u=[\ln u]_{1}^{16}=\ln 16-\ln 1=\ln 16 \tag{3}
\end{equation*}
$$

12. (i) Differentiate the LHS to get

$$
\begin{equation*}
3 \times 3 x^{2}+\left(x \times 2 y \frac{d y}{d x}+y^{2}\right)-2 \times 4 y^{3} \frac{d y}{d x} \tag{4}
\end{equation*}
$$

The RHS has derivative 0 giving the equation $9 x^{2}+2 x y \frac{d y}{d x}+y^{2}-8 y^{3} \frac{d y}{d x}=0$.
Then $\left(2 x y-8 y^{3}\right) \frac{d y}{d x}=-9 x^{2}-y^{2} \quad$ so $\quad \frac{d y}{d x}=\frac{9 x^{2}+y^{2}}{8 y^{3}-2 x y}$.
(ii) The slope of the tangent line when $x=-1, y=1$ is then $\frac{9+1}{8+2}=1$ and the line has equation $y-1=x+1$, so that $y=x+2$.
(iii) If this line meets the curve $y=x^{2}+5 x+6$ at a point with the horizontal coordinate x, then $x^{2}+5 x+6=x+2$, giving the quadratic equation $x^{2}+4 x+4=0$. The only solution is $x=-2$ so the line and the curve meet in exactly one point.
13. (a) Put $u=5-\sin x$. Then $y=\ln (5-\sin x)=\ln u$, so

$$
\begin{equation*}
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\frac{1}{u} \times(-\cos x)=-\frac{\cos x}{5-\sin x} \tag{3}
\end{equation*}
$$

(b) $y=e^{5 x+8}(7-3 x)=u v$ with $u=e^{5 x+8}, v=7-3 x$.

$$
\begin{equation*}
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}=e^{5 x+8} \times(-3)+(7-3 x) \times 5 e^{5 x+8}=e^{5 x+8}(32-15 x) . \tag{4}
\end{equation*}
$$

(c) In $u=\cos ^{4} x$, put $w=\cos x$. Then $u=w^{4}$. Hence $\frac{d u}{d x}=\frac{d u}{d w} \times \frac{d w}{d x}=4 w^{3} \times(-\sin x)=$ $-4 \cos ^{3} x \sin x$. Therefore $\frac{d}{d x}\left(5 x^{7}-10-\cos ^{4} x\right)=35 x^{6}+4 \cos ^{3} x \sin x$.
(d) Put $v=\sin ^{3} x$ and $w=\sin x$. Then $v=w^{3}$ and $\frac{d v}{d x}=\frac{d v}{d w} \times \frac{d w}{d x}=3 w^{2} \times \cos x=$ $3 \sin ^{2} x \cos x$. Setting also $u=2 x^{4}-7$, we have

$$
\begin{gather*}
\frac{d}{d x} \frac{2 x^{4}-7}{\sin ^{3} x}=\frac{d}{d x} \frac{u}{v}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
=\frac{\sin ^{3} x \times 8 x^{3}-\left(2 x^{4}-7\right) \times 3 \sin ^{2} x \cos x}{\sin ^{6} x}=\frac{8 x^{3} \sin x-3\left(2 x^{4}-7\right) \cos x}{\sin ^{4} x} \tag{4}
\end{gather*}
$$

14. (i) The stationary points occur where $f^{\prime}(x)=0$ and the inflection points where $f^{\prime \prime}(x)=$ 0 . Now $f^{\prime}(x)=3 x^{2}+2 x-12$ and $f^{\prime \prime}(x)=6 x+2$.
The inflection point occurs where $x=-\frac{1}{3}=-0.33$ and $f(x)=4 \frac{2}{27}=4.07$.
The stationary points are given by the quadratic formula as $x=\frac{-2 \pm \sqrt{4+144}}{6}=\frac{-1 \pm \sqrt{37}}{3}=$ -2.36 or 1.69 . These are respectively a local maximum, where $f^{\prime \prime}(x)<0$, and a local minimum, where $f^{\prime \prime}(x)>0$.
The corresponding values of $f(x)$ are 20.75 and -12.58 .
(ii) The curve $y=x^{3}+x^{2}-12 x$ crosses the x-axis when $x^{3}+x^{2}-12 x=0$. This happens when $x=0$ or when $x^{2}+x-12=0$, giving $x=-4$ or $x=3$ as well.
(iii) Using the information from (a) and (b), sketch the curve $y=x^{3}+x^{2}-12 x$.
(iv) The total area bounded by the curve and the x-axis is made up of two pieces, one between $x=-4$ and $x=0$, and the other between $x=0$ and $x=3$. These are found as $\left|\int_{-4}^{0} f(x) d x\right|$ and $\left|\int_{0}^{3} f(x) d x\right|$. Now $\int f(x) d x=\int\left(x^{3}+x^{2}-12 x\right) d x=\frac{x^{4}}{4}+\frac{1}{3} x^{3}-6 x^{2}$, giving the first area as $|-64+64 / 3+96|=160 / 3$ and the second as $|81 / 4+9-54|=99 / 4$ making a total of $937 / 12=78.08$.
15. (a) Substitute $u=x^{6}+4$. Then $d u=6 x^{5} d x$, so

$$
\begin{equation*}
I=\int x^{5} \cos \left(x^{6}+4\right) d x=\int \frac{1}{6} \cos u d u=\frac{1}{6} \sin u+C=\frac{1}{6} \sin \left(x^{6}+4\right)+C . \tag{4}
\end{equation*}
$$

(b) Substitute $t=\tan x$. Then $d t=\sec ^{2} x d x$, so

$$
\begin{equation*}
I=\int \tan ^{8} x \sec ^{2} x d x=\int t^{8} d t=\frac{t^{9}}{9}+C=\frac{1}{9} \tan ^{9} x+C . \tag{4}
\end{equation*}
$$

(c) Substitute $x=\frac{2}{5} \sin t$. Then $d x=\frac{2}{5} \cos t d t$. Therefore
$I=\int_{0}^{\sqrt{2} / 5} \frac{d x}{\sqrt{4-25 x^{2}}}=\int_{x=0}^{x=\sqrt{2} / 5} \frac{\frac{2}{5} \cos t}{\sqrt{4-4 \sin ^{2} t}} d t=\int_{x=0}^{x=\sqrt{2} / 5} \frac{\frac{2}{5} \cos t}{\sqrt{4 \cos ^{2} t}} d t=\frac{1}{5} \int_{x=0}^{x=\sqrt{2} / 5} d t=[t]_{x=0}^{x=\sqrt{2} / 5}$
Now when $x=0$ we have $t=0$ and when $x=\sqrt{2} / 5$ we have $\frac{\sqrt{2}}{5}=\frac{2}{5} \sin t$ so that $\sin t=\frac{\sqrt{2}}{2}$ and $t=\frac{\pi}{4}$. Consequently $I=\frac{1}{5}[t]_{t=0}^{t=\pi / 4}=\frac{1}{5}\left(\frac{\pi}{4}-0\right)=\frac{\pi}{20}=0.16$.

