MATH011

Sept 2006

1. (a)
$$\frac{a^9b^{-3}c^8}{a^7(bc^2)^4} = \frac{a^9b^{-3}c^8}{a^7b^4c^8} = \frac{a^2}{b^7}$$
 [2]

(b)
$$\frac{16x^2 - 1}{16x^2 + 8x + 1} = \frac{(4x - 1)(4x + 1)}{(4x + 1)^2} = \frac{4x - 1}{4x + 1}.$$
 [2]

2.
$$\frac{1}{y-7} - \frac{7}{y^2 - 7y} = \frac{y-7}{y(y-7)} = \frac{1}{y}$$
 [4]

3. (a)
$$x^2 - x - 72 = (x - 9)(x + 8)$$
 so solutions are $x = 9, x = -8$. [2]

(b) Using the quadratic formula
$$x = \frac{2 \pm \sqrt{4 - 4 \times 8 \times (-21)}}{16} = \frac{2 \pm 26}{16} = \frac{7}{4} \text{ or } -\frac{3}{2}$$
 [2]

4. (a) y = 3x - 6 represents a straight line with slope 3 meeting the y-axis at y = -6. [2] (b) $y = x^2 + 6x + 8$ is a quadratic curve, which is U-shaped, crossing the y-axis at y = 8and the x-axis at x = -2, x = -4. The curve is symmetric about the line x = -6/2 = -3. The vertex is at x = -3, y = -1. [3] (c) $y = |x^2 + 6x + 8|$ is given from (b) by reflecting the part below the x-axis in the x-axis. [2]

5. Put $y = \frac{2x+7}{1-3x}$, and solve for x in terms of y = f(x). Then y(1-3x) = 2x+7 so y - 3xy = 2x+7, giving x(3y+2) = y-7. Thus $x = f^{-1}(y) = \frac{y-7}{3y+2}$ and so $f^{-1}(x) = \frac{x-7}{3x+2}$. [3]

6. (a) Either use the formula $a \frac{1-r^n}{1-r}$ with r = -5, a = -5, n = 5, giving $-5 \times \frac{(-5)^5 - 1}{-5 - 1} = -2605$ or simply add up the 5 terms. [3]

(b) The formula is $\frac{a}{1-r}$. [1]

Here
$$a = \frac{7}{10}, r = \frac{7}{10}$$
, giving the sum as $\frac{\frac{7}{10}}{1 - \frac{7}{10}} = \frac{\frac{7}{10}}{\frac{3}{10}} = \frac{7}{3}$. [2]

7. (a)
$$\lim_{n \to \infty} \frac{2n^2 - 7n}{5n^2 + 6n - 1} = \lim_{n \to \infty} \frac{2 - \frac{7}{n}}{5 + \frac{6}{n} - \frac{1}{n^2}} \to \frac{2}{5} \text{ as } n \to \infty.$$
 [2]

(b) Putting x = 4 in the bottom of the fraction gives 0, as also in the top. Factorise to write

$$\frac{x^2 - x - 12}{x^2 - 16} = \frac{(x - 4)(x + 3)}{(x - 4)(x + 4)} = \frac{x + 3}{x + 4}$$

Now put x = 4 to get the limit $\frac{7}{8}$.

8. (a) Put u = 3x - 8. Then $y = (3x - 8)^7 = u^7$ so

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = 7u^6 \times 3 = 21(3x-8)^6.$$
 [2]

(b) Put $u = x^4 + 3$. Then $y = (x^4 + 3)^{\frac{5}{4}} = u^{\frac{5}{4}}$ and

$$\frac{dy}{dx} = \frac{5}{4}u^{\frac{1}{4}} \times \frac{du}{dx} = \frac{5}{4}u^{\frac{1}{4}} \times 4x^3 = 5x^3(x^4 + 3)^{\frac{1}{4}}.$$
 [3]

(c) $y = x^8 \cos x = uv$ with $u = x^8, v = \cos x$.

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx} = x^8(-\sin x) + 8x^7\cos x = -x^8\sin x + 8x^7\cos x.$$
 [3]

9. The slope of the tangent is the value of $\frac{dy}{dx}$ at x = -1. Now $\frac{dy}{dx} = 12x^3$, so the slope is -12. When x = -1 we have y = 5, so the tangent line has equation y - 5 = -12(x + 1), giving y = -12x - 7. [3]

10. (a)
$$\int (6 - 3x^5 - \sin x) \, dx = 6 \int 1 \, dx - 3 \int x^5 \, dx - \int \sin x \, dx = 6x - \frac{1}{2}x^6 + \cos x + C$$
 [4]

(b)
$$\int e^{-5x} dx = \frac{1}{-5}e^{-5x} + C = -\frac{1}{5}e^{-5x} + C.$$
 [2]

11. (a)
$$\int_0^{\pi/14} \cos 7x \, dx = \left[\frac{1}{7}\sin 7x\right]_0^{\pi/14} = \frac{1}{7}\sin(\pi/2) - \frac{1}{7}\sin 0 = \frac{1}{7}.$$
 [3]

(b) Substitute u = 5x - 14 so that du = 5dx. Then

$$I = \int_{3}^{6} \frac{5}{5x - 14} \, dx = \int_{x=3}^{x=6} \frac{1}{u} \, du = \int_{u=1}^{u=16} \frac{1}{u} \, du = [\ln u]_{1}^{16} = \ln 16 - \ln 1 = \ln 16$$
 [3]

12. (i) Differentiate the LHS to get

$$3 \times 3x^2 + (x \times 2y\frac{dy}{dx} + y^2) - 2 \times 4y^3\frac{dy}{dx}$$

$$[4]$$

2	
-	-

The RHS has derivative 0 giving the equation $9x^2 + 2xy\frac{dy}{dx} + y^2 - 8y^3\frac{dy}{dx} = 0.$ [1]

Then
$$(2xy - 8y^3)\frac{dy}{dx} = -9x^2 - y^2$$
 so $\frac{dy}{dx} = \frac{9x^2 + y^2}{8y^3 - 2xy}$. [2]

(ii) The slope of the tangent line when x = -1, y = 1 is then $\frac{9+1}{8+2} = 1$ and the line has equation y - 1 = x + 1, so that y = x + 2. [4]

(iii) If this line meets the curve $y = x^2 + 5x + 6$ at a point with the horizontal coordinate x, then $x^2 + 5x + 6 = x + 2$, giving the quadratic equation $x^2 + 4x + 4 = 0$. The only solution is x = -2 so the line and the curve meet in exactly one point. [4]

13. (a) Put $u = 5 - \sin x$. Then $y = \ln(5 - \sin x) = \ln u$, so

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \frac{1}{u} \times (-\cos x) = -\frac{\cos x}{5 - \sin x}$$
[3]

[4]

(b) $y = e^{5x+8}(7-3x) = uv$ with $u = e^{5x+8}, v = 7-3x$.

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx} = e^{5x+8} \times (-3) + (7-3x) \times 5e^{5x+8} = e^{5x+8}(32-15x).$$

(c) In
$$u = \cos^4 x$$
, put $w = \cos x$. Then $u = w^4$. Hence $\frac{du}{dx} = \frac{du}{dw} \times \frac{dw}{dx} = 4w^3 \times (-\sin x) = -4\cos^3 x \sin x$. Therefore $\frac{d}{dx}(5x^7 - 10 - \cos^4 x) = 35x^6 + 4\cos^3 x \sin x$. [4]

(d) Put $v = \sin^3 x$ and $w = \sin x$. Then $v = w^3$ and $\frac{dv}{dx} = \frac{dv}{dw} \times \frac{dw}{dx} = 3w^2 \times \cos x = 3\sin^2 x \cos x$. Setting also $u = 2x^4 - 7$, we have

$$\frac{d}{dx}\frac{2x^4 - 7}{\sin^3 x} = \frac{d}{dx}\frac{u}{v} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$
$$= \frac{\sin^3 x \times 8x^3 - (2x^4 - 7) \times 3\sin^2 x \cos x}{\sin^6 x} = \frac{8x^3 \sin x - 3(2x^4 - 7)\cos x}{\sin^4 x}$$
[4]

14. (i) The stationary points occur where f'(x) = 0 and the inflection points where f''(x) = 0. Now $f'(x) = 3x^2 + 2x - 12$ and f''(x) = 6x + 2. [3] The inflection point occurs where $x = -\frac{1}{3} = -0.33$ and $f(x) = 4\frac{2}{27} = 4.07$. [1] The stationary points are given by the quadratic formula as $x = \frac{-2 \pm \sqrt{4 + 144}}{6} = \frac{-1 \pm \sqrt{37}}{3} = -2.36$ or 1.69. These are respectively a local maximum, where f''(x) < 0, and a local minimum, where f''(x) > 0. The corresponding values of f(x) are 20.75 and -12.58. [2] (ii) The curve $y = x^3 + x^2 - 12x$ crosses the x-axis when $x^3 + x^2 - 12x = 0$. This happens

(ii) The curve $y = x^3 + x^2 - 12x$ crosses the x-axis when $x^3 + x^2 - 12x = 0$. This happens when x = 0 or when $x^2 + x - 12 = 0$, giving x = -4 or x = 3 as well. [2] (iii) Using the information from (a) and (b), sketch the curve $y = x^3 + x^2 - 12x$. [3] (iv) The total area bounded by the curve and the x-axis is made up of two pieces, one between x = -4 and x = 0, and the other between x = 0 and x = 3. These are found as $\left| \int_{-4}^{0} f(x) dx \right|$ and $\left| \int_{0}^{3} f(x) dx \right|$. Now $\int f(x) dx = \int (x^{3} + x^{2} - 12x) dx = \frac{x^{4}}{4} + \frac{1}{3}x^{3} - 6x^{2}$, giving the first area as $\left| -64 + 64/3 + 96 \right| = 160/3$ and the second as $\left| 81/4 + 9 - 54 \right| = 99/4$ making a total of 937/12 = 78.08. [4]

15. (a) Substitute $u = x^6 + 4$. Then $du = 6x^5 dx$, so

$$I = \int x^5 \cos(x^6 + 4) \, dx = \int \frac{1}{6} \cos u \, du = \frac{1}{6} \sin u + C = \frac{1}{6} \sin(x^6 + 4) + C.$$
 [4]

(b) Substitute $t = \tan x$. Then $dt = \sec^2 x \, dx$, so

$$I = \int \tan^8 x \sec^2 x \, dx = \int t^8 \, dt = \frac{t^9}{9} + C = \frac{1}{9} \tan^9 x + C.$$
 [4]

(c) Substitute $x = \frac{2}{5} \sin t$. Then $dx = \frac{2}{5} \cos t \, dt$. Therefore

$$I = \int_0^{\sqrt{2}/5} \frac{dx}{\sqrt{4 - 25x^2}} = \int_{x=0}^{x=\sqrt{2}/5} \frac{\frac{2}{5}\cos t}{\sqrt{4 - 4\sin^2 t}} \, dt = \int_{x=0}^{x=\sqrt{2}/5} \frac{\frac{2}{5}\cos t}{\sqrt{4\cos^2 t}} \, dt = \frac{1}{5} \int_{x=0}^{x=\sqrt{2}/5} \, dt = [t]_{x=0}^{x=\sqrt{2}/5}$$

Now when x = 0 we have t = 0 and when $x = \sqrt{2}/5$ we have $\frac{\sqrt{2}}{5} = \frac{2}{5} \sin t$ so that $\sin t = \frac{\sqrt{2}}{2}$ and $t = \frac{\pi}{4}$. Consequently $I = \frac{1}{5} [t]_{t=0}^{t=\pi/4} = \frac{1}{5} (\frac{\pi}{4} - 0) = \frac{\pi}{20} = 0.16$. [7]