SECTION A

1. Simplify:
(a)
$$\frac{a^9b^{-3}c^8}{a^7(bc^2)^4}$$
 (b) $\frac{16x^2 - 1}{16x^2 + 8x + 1}$.

[4 marks]

2. Write
$$\frac{1}{y-7} - \frac{7}{y^2 - 7y}$$
 as a single fraction, and simplify it as far as possible.

[4 marks]

3. Solve the following quadratic equations:
(a)
$$x^2 - x - 72 = 0$$
 (b) $8x^2 - 2x - 21 = 0$.

[4 marks]

4. Sketch the graph of each of the functions:
(a)
$$y = 3x - 6$$
 (b) $y = x^2 + 6x + 8$ (c) $y = |x^2 + 6x + 8|$.

[7 marks]

5. Given that $f(x) = \frac{2x+7}{1-3x}$, obtain an expression for the inverse function $f^{-1}(x)$.

[3 marks]

6. (a) Find the sum of the geometric series $\sum_{n=1}^{5} (-5)^n$.

(b) Write down the formula for the sum of the infinite geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ with first term *a* and common ratio *r*, when |r| < 1.

Hence show that $\sum_{n=1}^{\infty} \left(\frac{7}{10}\right)^n = \frac{7}{3}$.

[6 marks]

7. Evaluate the following limits:

(a)
$$\lim_{n \to \infty} \frac{2n^2 - 7n}{5n^2 + 6n - 1}$$
 (b) $\lim_{x \to 4} \frac{x^2 - x - 12}{x^2 - 16}$.

[4 marks]

8. Differentiate with respect to
$$x$$

(a) $(3x-8)^7$ (b) $(x^4+3)^{\frac{5}{4}}$ (c) $x^8 \cos x$.

[8 marks]

9. Write down the equation of the tangent line to the curve $y = 3x^4 + 2$ at the point where x = -1.

[3 marks]

10. Find the indefinite integrals:

(a) $\int (6 - 3x^5 - \sin x) dx$ (b) $\int e^{-5x} dx$.

[6 marks]

11. Evaluate the definite integrals:

(a)
$$\int_0^{\pi/14} \cos 7x \, dx$$

(b) $\int_3^6 \frac{5}{5x - 14} \, dx$ [Substitute $u = 5x - 14$].

[6 marks]

SECTION B

12. The function y = y(x) satisfies the equation

$$3x^3 + xy^2 - 2y^4 = -6.$$

(i) By differentiating both sides of this equation with respect to x find an equation relating x, y and $\frac{dy}{dx}$.

Hence show that $\frac{dy}{dx} = \frac{9x^2 + y^2}{8y^3 - 2xy}.$

(ii) Use this to show that the tangent line to the curve

$$3x^3 + xy^2 - 2y^4 = -6$$

at the point where x = -1 and y = 1 has equation y = x + 2.

(iii) Show that this line meets the curve with equation

$$y = x^2 + 5x + 6$$

in exactly one point.

[15 marks]

13. Differentiate the functions:

(a)
$$\ln(5 - \sin x)$$
 (b) $e^{5x+8}(7 - 3x)$
(c) $5x^7 - 10 - \cos^4 x$ (d) $\frac{2x^4 - 7}{\sin^3 x}$.

[15 marks]

14. (i) Find the stationary points and the inflection point of the function $f(x) = x^3 + x^2 - 12x$, in each case giving the values of x and f(x) to 2 decimal places.

Determine also the nature of the stationary points.

(ii) Find the three points at which the curve $y = x^3 + x^2 - 12x$ crosses the *x*-axis.

(iii) Using the information from (a) and (b), sketch the curve $y = x^3 + x^2 - 12x$.

(iv) Calculate the total area bounded by the curve and the x-axis.

[15 marks]

15. Find the indefinite integrals:

(a)
$$\int x^5 \cos(x^6 + 4) dx$$
 [Substitute $u = x^6 + 4$]
(b) $\int \tan^8 x \sec^2 x dx$ [Substitute $t = \tan x$].

Evaluate the definite integral:

(c)
$$\int_0^{\sqrt{2}/5} \frac{dx}{\sqrt{4-25x^2}}$$
 [Substitute $x = \frac{2}{5}\sin t$].

[15 marks]