SECTION A

1. Simplify:
(a) $\frac{a^{9} b^{-3} c^{8}}{a^{7}\left(b c^{2}\right)^{4}}$
(b) $\frac{16 x^{2}-1}{16 x^{2}+8 x+1}$.
[4 marks]
2. Write $\frac{1}{y-7}-\frac{7}{y^{2}-7 y}$ as a single fraction, and simplify it as far as possible.
3. Solve the following quadratic equations:
(a) $x^{2}-x-72=0$
(b) $8 x^{2}-2 x-21=0$.
4. Sketch the graph of each of the functions:
(a) $y=3 x-6$
(b) $y=x^{2}+6 x+8$
(c) $y=\left|x^{2}+6 x+8\right|$.
[7 marks]
5. Given that $f(x)=\frac{2 x+7}{1-3 x}$, obtain an expression for the inverse function $f^{-1}(x)$.
6. (a) Find the sum of the geometric series $\sum_{n=1}^{5}(-5)^{n}$.
(b) Write down the formula for the sum of the infinite geometric series $\sum_{n=1}^{\infty} a r^{n-1}$ with first term a and common ratio r, when $|r|<1$.

Hence show that $\sum_{n=1}^{\infty}\left(\frac{7}{10}\right)^{n}=\frac{7}{3}$.
7. Evaluate the following limits:
(a) $\lim _{n \rightarrow \infty} \frac{2 n^{2}-7 n}{5 n^{2}+6 n-1}$
(b) $\lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x^{2}-16}$.
[4 marks]
8. Differentiate with respect to x
(a) $(3 x-8)^{7}$
(b) $\left(x^{4}+3\right)^{\frac{5}{4}}$
(c) $x^{8} \cos x$.
9. Write down the equation of the tangent line to the curve $y=3 x^{4}+2$ at the point where $x=-1$.
10. Find the indefinite integrals:
(a) $\int\left(6-3 x^{5}-\sin x\right) d x$
(b) $\int e^{-5 x} d x$.
11. Evaluate the definite integrals:
(a) $\int_{0}^{\pi / 14} \cos 7 x d x$
(b) $\int_{3}^{6} \frac{5}{5 x-14} d x \quad$ [Substitute $\left.u=5 x-14\right]$.

SECTION B

12. The function $y=y(x)$ satisfies the equation

$$
3 x^{3}+x y^{2}-2 y^{4}=-6 .
$$

(i) By differentiating both sides of this equation with respect to x find an equation relating x, y and $\frac{d y}{d x}$.

Hence show that $\frac{d y}{d x}=\frac{9 x^{2}+y^{2}}{8 y^{3}-2 x y}$.
(ii) Use this to show that the tangent line to the curve

$$
3 x^{3}+x y^{2}-2 y^{4}=-6
$$

at the point where $x=-1$ and $y=1$ has equation $y=x+2$.
(iii) Show that this line meets the curve with equation

$$
y=x^{2}+5 x+6
$$

in exactly one point.
13. Differentiate the functions:
(a) $\ln (5-\sin x)$
(b) $e^{5 x+8}(7-3 x)$
(c) $5 x^{7}-10-\cos ^{4} x$
(d) $\frac{2 x^{4}-7}{\sin ^{3} x}$.
[15 marks]
14. (i) Find the stationary points and the inflection point of the function $f(x)=x^{3}+x^{2}-12 x$, in each case giving the values of x and $f(x)$ to 2 decimal places.

Determine also the nature of the stationary points.
(ii) Find the three points at which the curve $y=x^{3}+x^{2}-12 x$ crosses the x-axis.
(iii) Using the information from (a) and (b), sketch the curve $y=x^{3}+x^{2}-$ $12 x$.
(iv) Calculate the total area bounded by the curve and the x-axis.
15. Find the indefinite integrals:
(a) $\int x^{5} \cos \left(x^{6}+4\right) d x \quad\left[\right.$ Substitute $\left.u=x^{6}+4\right]$
(b) $\int \tan ^{8} x \sec ^{2} x d x \quad[$ Substitute $t=\tan x]$.

Evaluate the definite integral:
(c) $\int_{0}^{\sqrt{2} / 5} \frac{d x}{\sqrt{4-25 x^{2}}} \quad\left[\right.$ Substitute $\left.x=\frac{2}{5} \sin t\right]$.

