1. (a) $\frac{\left(a^{3} b\right)^{5} c^{-4}}{a^{15} b^{4} c^{3}}=\frac{a^{15} b^{5} c^{-4}}{a^{15} b^{4} c^{3}}=\frac{b}{c^{7}}$
(b) $\frac{1-16 x^{2}}{1+8 x+16 x^{2}}=\frac{(1-4 x)(1+4 x)}{(1+4 x)^{2}}=\frac{1-4 x}{1+4 x}$
2. $\frac{2}{2 x+5}+\frac{5}{2 x^{2}+5 x}=\frac{2}{2 x+5}+\frac{5}{x(2 x+5)}=\frac{2 x+5}{x(2 x+5)}=\frac{1}{x}$
3. (a) $x^{2}+3 x-28=(x-4)(x+7)$ so solutions are $x=4, x=-7$.
(b) Using the quadratic formula

$$
\begin{equation*}
x=\frac{-13 \pm \sqrt{169-4 \times 12 \times(-35)}}{24}=\frac{-13 \pm 43}{24}=\frac{5}{4} \quad \text { or } \quad-\frac{7}{3} \tag{2}
\end{equation*}
$$

4. (a) $y=-2 x+4$ represents a straight line with slope -2 meeting the $y$-axis at $y=4$. [2] (b) $y=x^{2}-4 x-12$ is a quadratic curve, which is U-shaped, crossing the $y$-axis at $y=-12$ and the $x$-axis at $x=-2, x=6$. The curve is symmetric about the line $x=-(-4) / 2=2$. The vertex is at $x=2, y=-16$.
(c) $y=\left|x^{2}-4 x-12\right|$ is obtained from (b) by reflecting the part below the $x$-axis in the $x$-axis.

5. Put $y=\frac{3-2 x}{4 x+5}$, and solve for $x$ in terms of $y=f(x)$. Then $(4 x+5) y=3-2 x$ so $4 x y+5 y=3-2 x$, giving $x(4 y+2)=3-5 y$.
Thus $x=f^{-1}(y)=\frac{3-5 y}{4 y+2}$ and so $f^{-1}(x)=\frac{3-5 x}{4 x+2}$.
6. (a) Either use the formula $S_{n}=a \frac{1-r^{n}}{1-r}$ with $r=-5, a=-5, n=4$, giving $-5 \times$ $\frac{(-5)^{4}-1}{-5-1}=-520$ or simply add up the 4 terms.
(b) The formula is $\frac{a}{1-r}$.

Here $a=\frac{2}{11}, r=\frac{2}{11}$, giving the sum as $\frac{\frac{2}{11}}{1-\frac{2}{11}}=\frac{\frac{2}{11}}{\frac{9}{11}}=\frac{2}{9}$.
7. (a) $\lim _{n \rightarrow \infty} \frac{4 n^{2}-7}{9-3 n-2 n^{2}}=\lim _{n \rightarrow \infty} \frac{4-\frac{7}{n^{2}}}{\frac{9}{n^{2}}-\frac{3}{n}-2} \rightarrow \frac{4}{-2}=-2$ as $n \rightarrow \infty$.
(b) Putting $x=6$ in the bottom of the fraction gives 0 , as also in the top. Factorise to write

$$
\begin{equation*}
\frac{x^{2}-36}{x^{2}-2 x-24}=\frac{(x-6)(x+6)}{(x-6)(x+4)}=\frac{x+6}{x+4} \tag{2}
\end{equation*}
$$

Now put $x=6$ to get the limit $\frac{12}{10}=\frac{6}{5}$.
8. (a) Put $u=5 x-6$. Then $y=(5 x-6)^{4}=u^{4}$ so

$$
\begin{equation*}
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=4 u^{3} \times 5=20(5 x-6)^{3} . \tag{2}
\end{equation*}
$$

(b) Put $u=x^{7}+2$. Then $y=\left(x^{7}+2\right)^{6 / 7}=u^{6 / 7}$ and

$$
\begin{equation*}
\frac{d y}{d x}=\frac{6}{7} u^{-1 / 7} \times \frac{d u}{d x}=\frac{6}{7} u^{-1 / 7} \times 7 x^{6}=6 x^{6}\left(x^{7}+2\right)^{-1 / 7} . \tag{3}
\end{equation*}
$$

(c) $y=x^{3} \cos x=u v$ with $u=x^{3}, v=\cos x$.

$$
\begin{equation*}
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}=-x^{3} \sin x+3 x^{2} \cos x \tag{3}
\end{equation*}
$$

9. The slope of the tangent is the value of $\frac{d y}{d x}$ at $x=2$. Now $\frac{d y}{d x}=-3 x^{2}$, so the slope is -12 . When $x=2$ we have $y=-4$, so the tangent line has equation $y+4=-12(x-2)$, giving $y=-12 x+20$.
10. (a) $\int\left(\sin x+3 x^{5}-4\right) d x=\int \sin x d x+3 \int x^{5} d x-4 \int 1 d x=-\cos x+\frac{1}{2} x^{6}-4 x+C$
(b) $\int e^{-4 x} d x=\frac{1}{-4} e^{-4 x}+C=-\frac{1}{4} e^{-4 x}+C$.
11. (a) $\int_{0}^{\frac{\pi}{10}} \cos 5 x d x=\left[\frac{1}{5} \sin 5 x\right]_{0}^{\frac{\pi}{10}}=\frac{1}{5} \sin \frac{\pi}{2}-\frac{1}{5} \sin 0=\frac{1}{5}$.
(b) Substitute $u=6 x+1$ so that $d u=6 d x$. Then

$$
\begin{equation*}
I=\int_{0}^{4} \frac{6}{6 x+1} d x=\int_{x=0}^{x=4} \frac{1}{u} d u=\int_{u=1}^{u=25} \frac{1}{u} d u=[\ln u]_{1}^{25}=\ln 25-\ln 1=\ln 25 \tag{3}
\end{equation*}
$$

12. (i) Differentiate the LHS to get

$$
\begin{equation*}
2 \times 3 x^{2}+3\left(x \times 2 y \frac{d y}{d x}+y^{2}\right)-7 \times 3 y^{2} \frac{d y}{d x} \tag{4}
\end{equation*}
$$

The RHS has derivative 0 giving the equation $6 x^{2}+6 x y \frac{d y}{d x}+3 y^{2}-21 y^{2} \frac{d y}{d x}=0$.
Then $3\left(7 y^{2}-2 x y\right) \frac{d y}{d x}=3\left(2 x^{2}+y^{2}\right) \quad$ so $\quad \frac{d y}{d x}=\frac{2 x^{2}+y^{2}}{7 y^{2}-2 x y}$.
(ii) The slope of the tangent line when $x=2, y=1$ is then $\frac{8+1}{7-4}=3$ and the line has equation $y-1=3(x-2)$, so that $y=3 x-5$.
(iii) If this line meets the curve $y=x^{2}+x-4$ at a point with the horizontal coordinate $x$, then $x^{2}+x-4=3 x-5$, giving the quadratic equation $x^{2}-2 x+1=0$. The only solution is $x=1$ so the line and the curve meet in exactly one point.
13. (a) Put $u=3-\sin x$. Then $y=\ln (3-\sin x)=\ln u$, so

$$
\begin{equation*}
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\frac{1}{u} \times(-\cos x)=\frac{\cos x}{\sin x-3} \tag{3}
\end{equation*}
$$

(b) $y=e^{4 x+5}(2-3 x)=u v$ with $u=e^{4 x+5}, v=2-3 x$.

$$
\begin{equation*}
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}=e^{4 x+5} \times(-3)+(2-3 x) \times 4 e^{4 x+5}=e^{4 x+5}(5-12 x) \tag{4}
\end{equation*}
$$

(c) In $u=\cos ^{6} x$, put $w=\cos x$. Then $u=w^{6}$. Hence $\frac{d u}{d x}=\frac{d u}{d w} \times \frac{d w}{d x}=6 w^{5} \times(-\sin x)=$ $-6 \cos ^{5} x \sin x$. Therefore $\frac{d}{d x}\left(\cos ^{6} x-5 x^{7}+8\right)=-6 \cos ^{5} x \sin x-35 x^{6}$.
(d) Put $v=\sin ^{3} x$ and $w=\sin x$. Then $v=w^{3}$ and $\frac{d u}{d x}=\frac{d v}{d w} \times \frac{d w}{d x}=3 w^{2} \times \cos x=$ $3 \sin ^{2} x \cos x$. Setting also $u=4-2 x^{5}$, we have

$$
\begin{gather*}
\frac{d}{d x} \frac{4-2 x^{5}}{\sin ^{3} x}=\frac{d}{d x} \frac{u}{v}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
=\frac{\sin ^{3} x \times\left(-10 x^{4}\right)-\left(4-2 x^{5}\right) \times 3 \sin ^{2} x \cos x}{\sin ^{6} x}=-\frac{10 x^{4} \sin x+3\left(4-2 x^{5}\right) \cos x}{\sin ^{4} x} \tag{4}
\end{gather*}
$$

14. (i) The stationary points occur where $f^{\prime}(x)=0$ and the inflection points where $f^{\prime \prime}(x)=$ 0 . Now $f^{\prime}(x)=3 x^{2}+4 x-15$ and $f^{\prime \prime}(x)=6 x+4$.

The inflection point occurs where $x=-\frac{2}{3}=-0.67$ and $f(x)=10+\frac{16}{27}=10.59$.
The stationary points are given by the quadratic formula as $x=\frac{-4 \pm \sqrt{16+180}}{6}=$ $\frac{-2 \pm 7}{3}=1.67$ or -3 . These are respectively a local minimum, where $f^{\prime \prime}(x)>0$, and a local maximum, where $f^{\prime \prime}(x)<0$.
The corresponding values of $f(x)$ are -14.81 and 36 .
(ii) The curve $y=x^{3}+2 x^{2}-15 x$ crosses the $x$-axis when $x^{3}+2 x^{2}-15 x=0$. This happens when $x=0$ or when $x^{2}+2 x-15=0$, giving $x=-5$ or $x=3$ as well.
(iii) Using the information from (a) and (b), sketch the curve $y=x^{3}-2 x^{2}-8 x$.
(iv) The total area bounded by the curve and the $x$-axis is made up of two pieces, one between $x=-5$ and $x=0$, and the other between $x=0$ and $x=3$. These are found as $\left|\int_{-5}^{0} f(x) d x\right|$ and $\left|\int_{0}^{3} f(x) d x\right|$. Now $\int f(x) d x=\int\left(x^{3}+2 x^{2}-15 x\right) d x=\frac{x^{4}}{4}+\frac{2}{3} x^{3}-\frac{15}{2} x^{2}$, giving the first area as $|-625 / 4+250 / 3+375 / 2|=1375 / 12$ and the second as $|81 / 4+18-135 / 2|=119 / 4$ making a total of $1375 / 12+119 / 4=433 / 3=144.33$.

14(iii)

15. (a) Substitute $u=x^{6}+8$. Then $d u=6 x^{5} d x$, so

$$
\begin{equation*}
I=\int x^{5} \cos \left(x^{6}+8\right) d x=\int \frac{1}{6} \cos u d u=\frac{1}{6} \sin u+C=\frac{1}{6} \sin \left(x^{6}+8\right)+C . \tag{4}
\end{equation*}
$$

(b) Substitute $t=\tan x$. Then $d t=\sec ^{2} x d x$, so

$$
\begin{equation*}
I=\int \tan ^{9} x \sec ^{2} x d x=\int t^{9} d t=\frac{t^{10}}{10}+C=\frac{1}{10} \tan ^{10} x+C \tag{4}
\end{equation*}
$$

(c) Substitute $x=\frac{4}{5} \sin t$. Then $d x=\frac{4}{5} \cos t d t$. Therefore

$$
\begin{aligned}
& I=\int_{0}^{2 \sqrt{2} / 5} \frac{d x}{\sqrt{16-25 x^{2}}}=\int_{x=0}^{x=2 \sqrt{2} / 5} \frac{\frac{4}{5} \cos t}{\sqrt{16-16 \sin ^{2} t} d t=} \\
& =\int_{x=0}^{x=2 \sqrt{2} / 5} \frac{\frac{4}{5} \cos t}{\sqrt{16 \cos ^{2} t}} d t=\frac{1}{5} \int_{x=0}^{x=2 \sqrt{2} / 5} d t=\frac{1}{5}[t]_{x=0}^{x=2 \sqrt{2} / 5}
\end{aligned}
$$

Now when $x=0$ we have $t=0$, and when $x=2 \sqrt{2} / 5$ we have $2 \sqrt{2} / 5=\frac{4}{5} \sin t$ so that $\sin t=\frac{\sqrt{2}}{2}$ and $t=\frac{\pi}{4}$. Consequently $I=\frac{1}{5}[t]_{t=0}^{t=\pi / 4}=\frac{1}{5}\left(\frac{\pi}{4}-0\right)=\frac{\pi}{20}=0.16$.

