1. (a) $\frac{x^{7}\left(y^{2} z\right)^{4}}{x^{-3} y^{8} z^{5}}=\frac{x^{7} y^{8} z^{4}}{x^{-3} y^{8} z^{5}}=x^{10} z^{-1}$
(b) $\frac{4 b^{2}-1}{4 b^{2}-4 b+1}=\frac{(2 b-1)(2 b+1)}{(2 b-1)^{2}}=\frac{2 b+1}{2 b-1}$.
2. $\frac{1}{a-3}-\frac{3}{a^{2}-3 a}=\frac{a-3}{a(a-3)}=\frac{1}{a}$
[4]
3. (a) $x^{2}-x-42=(x-7)(x+6)$ so solutions are $x=7, x=-6$.
(b) Using the quadratic formula $x=\frac{13 \pm \sqrt{169-4 \times 10 \times(-3)}}{20}=\frac{13 \pm 17}{20}=\frac{3}{2}$ or $-\frac{1}{5}[2]$
4. (a) $y=4 x-5$ represents a straight line with slope 4 meeting the y-axis at $y=-5$.
(b) $y=x^{2}-6 x-7$ is a quadratic curve, which is U-shaped, crossing the y-axis at $y=-7$ and the x-axis at $x=-1, x=7$. The curve is symmetric about the line $x=-(-6) / 2=3$. The vertex is at $x=3, y=-16$.
(c) $y=\left|x^{2}-6 x-7\right|$ is given from (b) by reflecting the part below the x-axis in the x-axis.

4(b) $\quad y=x^{2}-6 x-7$
4(c) $\quad y=\left|x^{2}-6 x-7\right|$
5. Put $y=\frac{1-3 x}{2 x+7}$, and solve for x in terms of $y=f(x)$. Then $(2 x+7) y=1-3 x$ so $2 x y+7 y=1-3 x$, giving $x(2 y+3)=1-7 y$.
Thus $x=f^{-1}(y)=\frac{1-7 y}{2 y+3}$ and so $f^{-1}(x)=\frac{1-7 x}{2 x+3}$.
6. (a) Either use the formula $a \frac{1-r^{n}}{1-r}$ with $r=-4, a=-4, n=5$, giving $-4 \times \frac{(-4)^{5}-1}{-4-1}=$ -820 or simply add up the 5 terms.
(b) The formula is $\frac{a}{1-r}$.

Here $a=\frac{5}{9}, r=\frac{5}{4}$, giving the sum as $\frac{\frac{5}{9}}{1-\frac{5}{9}}=\frac{\frac{5}{9}}{\frac{4}{9}}=\frac{5}{4}$.
7. (a) $\lim _{n \rightarrow \infty} \frac{4+5 n-3 n^{2}}{2 n^{2}+7}=\lim _{n \rightarrow \infty} \frac{\frac{4}{n^{2}}+\frac{5}{n}-3}{2+\frac{7}{n^{2}}} \rightarrow \frac{-3}{2}=-\frac{3}{2}$ as $n \rightarrow \infty$.
(b) Putting $x=3$ in the bottom of the fraction gives 0 , as also in the top. Factorise to write

$$
\begin{equation*}
\frac{x^{2}+x-12}{x^{2}-9}=\frac{(x-3)(x+4)}{(x-3)(x+3)}=\frac{x+4}{x+3} \tag{2}
\end{equation*}
$$

Now put $x=3$ to get the limit $\frac{7}{6}$.
8. (a) Put $u=4 x+3$. Then $y=(4 x+3)^{6}=u^{6}$ so

$$
\begin{equation*}
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=6 u^{5} \times 4=24(4 x+3)^{5} \tag{2}
\end{equation*}
$$

(b) Put $u=x^{3}-2$. Then $y=\left(x^{3}-2\right)^{\frac{5}{3}}=u^{\frac{5}{3}}$ and

$$
\begin{equation*}
\frac{d y}{d x}=\frac{5}{3} u^{\frac{2}{3}} \times \frac{d u}{d x}=\frac{5}{3} u^{\frac{2}{3}} \times 3 x^{2}=5 x^{2}\left(x^{3}-2\right)^{\frac{2}{3}} . \tag{3}
\end{equation*}
$$

(c) $y=x^{7} \sin x=u v$ with $u=x^{7}, v=\sin x$.

$$
\begin{equation*}
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}=x^{7} \cos x+7 x^{6} \sin x \tag{3}
\end{equation*}
$$

9. The slope of the tangent is the value of $\frac{d y}{d x}$ at $x=1$. Now $\frac{d y}{d x}=-6 x^{2}$, so the slope is -6 . When $x=1$ we have $y=3$, so the tangent line has equation $y-3=-6(x-1)$, giving $y=-6 x+9$.
10. (a) $\int\left(\cos x-2 x^{3}+5\right) d x=\int \cos x d x-2 \int x^{3} d x+5 \int 1 d x=\sin x-\frac{1}{2} x^{4}+5 x+C$
(b) $\int e^{7 x} d x=\frac{1}{7} e^{7 x}+C$.
11. (a) $\int_{0}^{\frac{\pi}{8}} \sin 8 x d x=\left[-\frac{1}{8} \cos 8 x\right]_{0}^{\frac{\pi}{8}}=-\frac{1}{8} \cos \pi+\frac{1}{8} \cos 0=\frac{1}{4}$.
(b) Substitute $u=3 x-5$ so that $d u=3 d x$. Then

$$
\begin{equation*}
I=\int_{2}^{7} \frac{3}{3 x-5} d x=\int_{x=2}^{x=6} \frac{1}{u} d u=\int_{u=1}^{u=16} \frac{1}{u} d u=[\ln u]_{1}^{16}=\ln 16-\ln 1=\ln 16 \tag{3}
\end{equation*}
$$

12. (i) Differentiate the LHS to get

$$
\begin{equation*}
2 \times 4 x^{3}-\left(x^{2} \frac{d y}{d x}+2 x y\right)-3 \times 3 y^{2} \frac{d y}{d x} \tag{4}
\end{equation*}
$$

The RHS has derivative 0 giving the equation $8 x^{3}-x^{2} \frac{d y}{d x}-2 x y-9 y^{2} \frac{d y}{d x}=0$.
Then $\left(x^{2}+9 y^{2}\right) \frac{d y}{d x}=8 x^{3}-2 x y \quad$ so $\quad \frac{d y}{d x}=\frac{8 x^{3}-2 x y}{x^{2}+9 y^{2}}$.
(ii) The slope of the tangent line when $x=1, y=-1$ is then $\frac{8+2}{1+9}=1$ and the line has equation $y+1=x-1$, so that $y=x-2$.
(iii) If this line meets the curve $y=x^{2}-3 x+2$ at a point with the horizontal coordinate x, then $x^{2}-3 x+2=x-2$, giving the quadratic equation $x^{2}-4 x+4=0$. The only solution is $x=2$ so the line and the curve meet in exactly one point.
13. (a) Put $u=\cos x+2$. Then $y=\ln (\cos x+2)=\ln u$, so

$$
\begin{equation*}
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\frac{1}{u} \times(-\sin x)=-\frac{\sin x}{\cos x+2} \tag{3}
\end{equation*}
$$

(b) $y=e^{3-2 x}(5 x+4)=u v$ with $u=e^{3-2 x}, v=5 x+4$.

$$
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}=e^{3-2 x} \times 5+(5 x+4) \times(-2) e^{3-2 x}=-e^{3-2 x}(10 x+3) .
$$

[4]
(c) In $u=\sin ^{5} x$, put $w=\sin x$. Then $u=w^{5}$. Hence $\frac{d u}{d x}=\frac{d u}{d w} \times \frac{d w}{d x}=5 w^{4} \times \cos x=$ $5 \sin ^{4} x \cos x$. Therefore $\frac{d}{d x}\left(\sin ^{5} x+2 x^{4}-7\right)=5 \sin ^{4} x \cos x+8 x^{3}$.
(d) Put $v=\cos ^{4} x$ and $w=\cos x$. Then $v=w^{4}$ and $\frac{d v}{d x}=\frac{d v}{d w} \times \frac{d w}{d x}=4 w^{3} \times(-\sin x)=$ $-4 \cos ^{3} x \sin x$. Setting also $u=4 x^{3}-5$, we have

$$
\begin{gathered}
\frac{d}{d x} \frac{4 x^{3}-5}{\cos ^{4} x}=\frac{d}{d x} \frac{u}{v}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
=\frac{\cos ^{4} x \times 12 x^{2}-\left(4 x^{3}-5\right)\left(-4 \cos ^{3} x \sin x\right)}{\cos ^{8} x}=\frac{12 x^{2} \cos x+4\left(4 x^{3}-5\right) \sin x}{\cos ^{5} x}
\end{gathered}
$$

14. (i) The stationary points occur where $f^{\prime}(x)=0$ and the inflection points where $f^{\prime \prime}(x)=$ 0 . Now $f^{\prime}(x)=3 x^{2}-4 x-8$ and $f^{\prime \prime}(x)=6 x-4$.
The inflection point occurs where $x=\frac{2}{3}=0.67$ and $f(x)=-\frac{160}{27}=-5.93$.

The stationary points are given by the quadratic formula as $x=\frac{4 \pm \sqrt{16+96}}{6}=\frac{2 \pm 2 \sqrt{7}}{3}=$ 2.43 or -1.10 . These are respectively a local minimum, where $f^{\prime \prime}(x)>0$, and a local maximum, where $f^{\prime \prime}(x)<0$.
The corresponding values of $f(x)$ are -16.90 and 5.05.
(ii) The curve $y=x^{3}-2 x^{2}-8 x$ crosses the x-axis when $x^{3}-2 x^{2}-8 x=0$. This happens when $x=0$ or when $x^{2}-2 x-8=0$, giving $x=-2$ or $x=4$ as well.
(iii) Using the information from (a) and (b), sketch the curve $y=x^{3}-2 x^{2}-8 x$.
(iv) The total area bounded by the curve and the x-axis is made up of two pieces, one between $x=-2$ and $x=0$, and the other between $x=0$ and $x=4$. These are found as $\left|\int_{-2}^{0} f(x) d x\right|$ and $\left|\int_{0}^{4} f(x) d x\right|$. Now $\int f(x) d x=\int\left(x^{3}-2 x^{2}-8 x\right) d x=\frac{x^{4}}{4}-\frac{2}{3} x^{3}-4 x^{2}$, giving the first area as $|4+16 / 3-16|=20 / 3$ and the second as $|64-128 / 3-64|=128 / 3$ making a total of $148 / 3=49.33$.

14(iii)

15. (a) Substitute $u=x^{5}-6$. Then $d u=5 x^{4} d x$, so

$$
\begin{equation*}
I=\int x^{4} \sin \left(x^{5}-6\right) d x=\int \frac{1}{5} \sin u d u=-\frac{1}{5} \cos u+C=-\frac{1}{5} \cos \left(x^{5}-6\right)+C . \tag{4}
\end{equation*}
$$

(b) Substitute $t=\tan x$. Then $d t=\sec ^{2} x d x$, so

$$
\begin{equation*}
I=\int \tan ^{6} x \sec ^{2} x d x=\int t^{6} d t=\frac{t^{7}}{7}+C=\frac{1}{7} \tan ^{7} x+C \tag{4}
\end{equation*}
$$

(c) Substitute $x=\frac{2}{3} \sin t$. Then $d x=\frac{2}{3} \cos t d t$. Therefore

$$
I=\int_{0}^{1 / 3} \frac{d x}{\sqrt{4-9 x^{2}}}=\int_{x=0}^{x=1 / 3} \frac{\frac{2}{3} \cos t}{\sqrt{4-4 \sin ^{2} t}} d t=\int_{x=0}^{x=1 / 3} \frac{\frac{2}{3} \cos t}{\sqrt{4 \cos ^{2} t}} d t=\frac{1}{3} \int_{x=0}^{x=1 / 3} d t=[t]_{x=0}^{x=1 / 3}
$$

Now when $x=0$ we have $t=0$ and when $x=1 / 3$ we have $1 / 3=\frac{2}{3} \sin t$ so that $\sin t=\frac{1}{2}$ and $t=\frac{\pi}{6}$. Consequently $I=\frac{1}{3}[t]_{t=0}^{t=\pi / 6}=\frac{1}{3}\left(\frac{\pi}{6}-0\right)=\frac{\pi}{18}=0.17$.

