All questions carry equal weight. If a question has several parts, each part will carry equal weight. The best **eight** answers will be taken into account.

1. (a) Simplify the following:

(i)
$$5p - 3rs + 5p + 3rs$$
; (ii) $p^2 + 2pr - 2p^2 - 3pr$;

(iii)
$$2p + 6rs + 2rs - 4p$$
; (iv) $2(x+y) - (x-y)$.

- (b) Simplify
 - (i) $\frac{2^{27}}{2^{23}}$; (ii) $\frac{4^7}{8^4}$.
- 2. Simplify

(i)
$$\frac{x}{x+1} - \frac{x}{x-1}$$
; (ii) $\frac{7}{x^2} + \frac{5}{x}$;

$$(iii)$$
 $\frac{x}{(x-1)(x+1)} - \frac{2}{(x-1)(x+2)}$ (iv) $\frac{x}{(x-1)} + \frac{1}{(1-x)}$.

- **3.** (a) Work out $\frac{x}{y} + \frac{-y}{x}$; $\frac{x}{y} \frac{-y}{x}$; $\frac{x}{y} \times \frac{-y}{x}$ and $\frac{x}{y} \div \frac{-y}{x}$.
 - (b) Solve the inequalities:
 - (i) -2x+3 > -1 and (ii) x-1 > 2x+1.
- 4. (a) Factorise the following quadratics and hence find their solutions:
 - (i) $x^2 x 12$; (ii) $2x^2 + 5x + 2$.
 - (b) Use the formula to solve the following quadratics:

(i)
$$x^2 + 4x + 1 = 0$$
; (ii) $3x^2 + 2x - 5 = 0$.

- **5.** (a) Let $y = 2 \log_a 12 \log_a 9$. Express y as a single logarithm and find y when a = 2.
- (b) A coin is tossed 4 times. Using "T" for tails and "H" for heads, write out all possible outcomes. How many of these outcomes have exactly two heads and two tails?
- **6.** (a) In a class of 32 students, 16 study French and 15 study German. If 3 students study both French and German, how many students study neither language?
 - (b) Decide which of the following sets are equal:

$$A = \{n \text{ in } \mathbf{Z} : 0 < n < 8 \text{ and } n^2 < 2n + 1\}; B = \{n \text{ in } \mathbf{Z} : n^3 = n\};$$

 $C = \{0, 1, 2\}; D = \{n \text{ in } \mathbf{Z} : n^2 < 2\}.$

- 7. (a) Use the binomial theorem to find:
- (i) $(2x+y)^4$ and (ii) $(x-2y)^3$.
 - (b) Prove, by mathematical induction that for all natural numbers n

$$1+3+5+\cdots(2n-1)=n^2$$
.

- 8. (a) A race has 8 competitors. How many possible results (first, second, third) are there?
 - (b) In how many ways can a committee of 4 be formed from 10 people?
- (c) How many distinct arrangements of the four letters H,A, L and L are there?
- (d) In how many ways can 8 identical coins be distributed between 6 children?

9. Write down the truth tables for the expressions

$$(i)$$
 $(p \to q) \to (q \to p);$ (ii) $\neg (p \to q) \to (\neg p \lor \neg q)$

and decide whether either is a tautology.

- 10. In the set of all integers, let p(x) be the predicate "x > 1" and q(x) be the predicate "x < 6". Decide which of the following are true and which are false
 - (i) $\forall x (p(x) \lor q(x));$ (ii) $\forall x (p(x)) \lor \forall x (q(x));$
 - (iii) $\exists x (p(x) \land q(x));$ (iv) $\exists x (p(x)) \land \exists x (\neg q(x)).$
- 11. Draw a graph to satisfy each of the following specifications or indicate why it is impossible to do so

A simple graph with 4 vertices and 3 edges;

A graph with 4 vertices and 7 edges;

A simple graph with 4 vertices and 7 edges;

A connected graph with 4 vertices and 2 edges.

- 12. Let Γ be a graph with v vertices and e edges. Write down a formula relating e to the degrees of the graph at each vertex of Γ . Now suppose that Γ is a tree, write down a relationship between e and v. Suppose that Γ is a tree with 4 vertices of degree 1, 1 vertex of degree 2 and k vertices of degree 4. Determine k and draw Γ
 - 13. Given the 2×2 matrix

$$A = \left(\begin{array}{cc} -1 & -1 \\ 0 & 1 \end{array}\right)$$

calculate A^2 , det A and A^{-1} . What is A^3 ?