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Full marks can be obtained for complete answers to FIVE questions.

Only the best FIVE answers will be counted.

Throughout this paper standard notation is used. Thus X, Y and Z denote population

densities of susceptible, infected and immune individuals, respectively. Additionally, N

or H is the total density of host individuals. Furthermore, β is the transmission

parameter, γ  is the rate of recovery, ν  is the rate of loss of immunity, µ  or b is the

death rate, p and j  are vaccination parameters, r is the intrinsic growth rate, α  is the

pathogenicity, Γ  is the net rate of loss of infecteds, K is the carrying capacity and D is

the diffusion constant.



1. The dynamics of an epidemic without removal are given by the equations
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where, initially, there areη ηN N infectives and ( )1 −  susceptibles with η  between 0

and 1.

Find the number of susceptibles as a function of time. Find also the equation of the

epidemic curve and locate and evaluate its maximum.

2. The dynamics of an epidemic with removal are given by the equations
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These equations also describe endemic behaviour. Find the equilibrium states and

analyse these for feasibility and stability. State how you would expect the long-term

outcomes to depend on parameter values.



3. With births, deaths and two vaccination protocols included, the dynamics of an

epidemic are given by the equations
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These equations also describe endemic behaviour. Find the equilibrium states and

analyse these for feasibility and stability. Determine a threshold condition, involving

both p j and , for the eradication of the infection in the long-term.

4. In a criss-cross venereal infection model with the removed class permanently immune

and no immune individuals initially, the dynamics are given, in standard notation, by
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Describe, very briefly, the assumptions made when such a model is used.

Show that the female and male populations are both constant. Show also that

X t X Z1 1 1 2 20( ) ( ) exp( )= −β γ .

Deduce that as, t tends to infinity, X1 tends to a positive limit and Y1 tends to zero.

Obtain transcendental equations which determine the long-term limiting values of

X X1 2 and .

Show that the threshold condition for an epidemic to occur is that at least one of
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is true. What single condition would ensure an epidemic?



5. The basic dynamics of host-parasite associations in which the parasite affects host

numbers are given by
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Describe, very briefly, the assumptions made when such a model is used. Explain how

the equations would need to be modified to include (separately) the following effects:

(i) parasite-induced reduction of host reproduction, (ii) vertical transmission, (iii) latent

periods of infections, (iv) density-dependent pathogenicity, (v) density-dependent host

reproduction and (vi) transmission by free-living infective stages.

In the basic model, the pathogen is unable to regulate the host if α < r.  Show that,

when this inequality holds, the host grows at a reduced exponential rate. Determine

this rate ρ and the corresponding behaviour of X . Determine how these results change

(if they do) when (ii) is included.

6. A spatio-temporal epidemic model is given, in dimensionless form, by the equations
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where λ is positive. Explain the significance of each of the terms in these equations.

Travelling wave solutions X z Y z z x ct( ), ( ), = −  are sought with

X X Y Y( ) , ( ) ( ) ( ) .∞ = ′ −∞ = ∞ = −∞ =1 0

Explain the reason for each of these conditions.

Show that the travelling wave solution conserves the quantity

′ + + −Y cY cX c Xλ ln .

Obtain a transcendental equation for the surviving susceptible populationσ  after the

passage of the wavefront. Sketch σ  as a function of λ and comment on your result.



7. A spatio-temporal model for the spread of rabies which includes births and deaths of

the host is of the form
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Non-dimensionalize this system to give
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where u relates to Y and v to X. Identify λ and s.

Look for travelling wave solutions with u v> >0 0 and  and hence show, by linearizing

in the region where v u→ →1 0 and ,  that a wave may exist if λ < 1  and if so the

minimum wave speed is 2 1 1 2( ) /− λ . What is the steady state far behind the wave?


