PAPER CODE NO. MA06

SUMMER 1998 EXAMINATIONS

Degree of Bachelor of Science : Year 0
Degree of Bachelor of Science : Year 1
Degree of Bachelor of Engineering : Year 0

VECTORS AND KINEMATICS

TIME ALLOWED: Three Hours

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in Section A and THREE questions from Section B. The total of the marks available on Section A is 55.

Paper Code **2MA06**

Page 1 of 5

CONTINUED/

SECTION A

- 1. The points A, B and C have position vectors \mathbf{a} , \mathbf{b} and \mathbf{c} , respectively, with respect to an origin O. Express each of the following in terms of \mathbf{a} , \mathbf{b} and \mathbf{c} .
 - (a) \overrightarrow{BC} ;
 - (b) the position vector with respect to O of the point D such that ABDC is a parallelogram;
 - (c) the position vector with respect to O of the point E such that $\overrightarrow{BE} = 3\overrightarrow{BA}$.

[8 marks]

2. Let \mathbf{i} , \mathbf{j} and \mathbf{k} be mutually orthogonal unit vectors. Suppose that

$$\mathbf{u} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$$
 and $\mathbf{v} = \mathbf{i} - 4\mathbf{j} - \mathbf{k}$.

Find

- (a) the lengths of \mathbf{u} , \mathbf{v} and $\mathbf{u} + \mathbf{v}$;
- (b) a unit vector parallel to $\mathbf{u} + \mathbf{v}$;
- (c) $\mathbf{u}.\mathbf{v}$;
- (d) a vector orthogonal to both ${\bf u}$ and ${\bf v}\,.$

[11 marks]

- 3. Let \mathbf{a} , \mathbf{b} and \mathbf{c} be non-zero vectors.
 - (a) What can you deduce from the statement $\mathbf{a}.\mathbf{b} = 0$?
 - (b) What can you deduce from the statement $\mathbf{b} \times \mathbf{c} = \mathbf{0}$?
 - (c) What can you deduce from the statement $(\mathbf{a} \times \mathbf{b}).\mathbf{c} = 0$.

[7 marks]

- 4. The points A, B and C have Cartesian coordinates (1, -3, 4), (2, -4, 4) and (2, -2, 2), respectively. Find
 - (a) the lengths of the sides of triangle ABC;
 - (b) the angles of the triangle ABC;
 - (c) the area of triangle AOB, where O is the origin.

[12 marks]

- 5. The unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to the coordinate axes Ox, Oy and Oz respectively. The points A and B have coordinates (1, -1, 1) and (2, 1, -1) respectively.
 - (a) Express \overrightarrow{AB} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .
 - (b) Find the vector equation of the line through A and B.
 - (c) Find the Cartesian equation of the plane through A and perpendicular to AB.

[9 marks]

6. The equation of motion of a particle of mass m, moving under a constant force \mathbf{F} , is

$$m\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} = \mathbf{F}.$$

The particle is projected from the origin at time t = 0 with velocity **u**. Integrate the equation of motion twice to obtain **r** as a function of t.

Suppose now that $\mathbf{F} = -mg\mathbf{k}$ and $\mathbf{u} = v(\mathbf{i} + \mathbf{k})$, where \mathbf{i} is a unit vector in a horizontal direction and \mathbf{k} is a unit vector in the vertically upwards direction, and g and v are constants. Find the time at which the particle reaches the highest point of its trajectory.

[8 marks]

SECTION B

- 7. The position vectors with respect to O of the vertices A and B of the triangle OAB are \mathbf{a} and \mathbf{b} respectively. The mid point of AB is D and that of OA is E.
 - (a) Find, in terms of **a** and **b**, the vector equations of the line l_1 through B and E and the line l_2 through O and O.
 - (b) Let G be the point of intersection of l_1 and l_2 . Find \overrightarrow{OG} in terms of \mathbf{a} and \mathbf{b} .
 - (c) Write down the equation of the line l_3 through A and G.
 - (d) Show that l_3 passes through the mid point of OB.

[15 marks]

8. The planes Π_1 and Π_2 have equations

$$x + 2y - z = 4$$
 and $2x - y - 3z = 3$,

respectively, with respect to Cartesian axes Oxyz. Find

- (a) the angle between the planes Π_1 and Π_2 ;
- (b) the distance of the origin O from Π_1 ;
- (c) the equation of the line l of intersection of the planes Π_1 and Π_2 in terms of a parameter λ ;
- (d) the coordinates of two (different) points on the line l.

[15 marks]

9. Let **i**, **j** and **k** be mutually orthogonal unit vectors. Suppose that

$$\mathbf{a} = \mathbf{i} + 2\mathbf{j}, \quad \mathbf{b} = \mathbf{j} + 3\mathbf{k} \quad \text{and} \quad \mathbf{c} = \mathbf{i} + \mathbf{j} + \mathbf{k}.$$

- (a) (i) Show that **a**, **b** and **c** are linearly independent.
 - (ii) Express $2\mathbf{i} \mathbf{j} + \mathbf{k}$ as a linear combination of \mathbf{a} , \mathbf{b} and \mathbf{c} .
- (b) Establish whether the lines with vector equations

$$\mathbf{r} = \mathbf{a} + 2\mathbf{c} + \lambda \mathbf{b}$$
 and $\mathbf{r} = \mathbf{c} + \mu(\mathbf{a} - \mathbf{c})$

do or do not intresect, giving reasons.

(c) Show that the position vector of the point on the line with equation

$$\mathbf{r} = \mathbf{c} + \mu(\mathbf{a} - \mathbf{c})$$

which is nearest to the origin can be written as

$$\mathbf{c} + \frac{\mathbf{c} \cdot (\mathbf{c} - ab)}{|\mathbf{a} - cb|^2} (\mathbf{a} - cb)$$

(*Hint:* consider the distance squared $\mathbf{r} \cdot \mathbf{r}$).

[15 marks]

10. (a) The position vector, with respect to a fixed origin O, of a particle at time t is

$$\mathbf{r} = (a\cos\omega t)\mathbf{i} + (a\sin\omega t)\mathbf{j},$$

where **i** and **j** are fixed mutually orthogonal unit vectors and a and ω are constants.

- (i) Show that the path of the particle is a circle centre O.
- (ii) Find the velocity \mathbf{v} of the particle at time t and deduce that $\mathbf{r} \times \mathbf{v}$ is constant.
- (iii) Show that the acceleration of the particle is, at all times, of the form $\alpha \mathbf{r}$ and give the value of the constant α .
- (b) An aircraft has constant velocity $200(\mathbf{i} 2\mathbf{j})$ km h⁻¹ with respect to the wind, where \mathbf{i} and \mathbf{j} are unit vectors pointing due East and due North, respectively. The wind is blowing *from* the South-West at a speed of $50\sqrt{2}$ km h⁻¹ with respect to the ground. What is the speed of the aircraft with respect to the ground.

[15 marks]