
PAPER CODE NO.
COMP317

EXAMINER: Grant Malcolm

DEPARTMENT: Computer Science

TEL. NO. 794 6794

THE UNIVERSITY

of LIVERPOOL

JANUARY 2004 EXAMINATIONS

Bachelor of Arts: Year 3

Bachelor of Engineering: Year 3
Bachelor of Science: Year 3

No qualification aimed for: Year 1

SEMANTICS OF PROGRAMMING LANGUAGES

TIME ALLOWED: Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

Answer four questions only.

If you attempt to answer more questions than the required number of questions (in any section),
the marks awarded for the excess questions will be discarded (starting with your lowest mark).

PAPER CODE COMP317 page 1 of 8 Continued

THE UNIVERSITY

of LIVERPOOL

1. Appendix A summarises the syntax and denotational semantics of a simple imperative
programming language. We want to extend this language with case conditionals of the
form

case E of

NI : PI ;
Nz : Pz ;

Nm : Pm
endcase

where E is an arithmetic expression, each Ni is a number, and each Pi is a program. This
program is executed by first evaluating the expression E to obtain a number N; if the
first occurrence of N in the list NI, . . . , Nm is Ni (we allow that the list NI, . . . , Nm may
contain duplicates), then program Pi is executed; if N doesn't occur in the list NI, . . . , Nm
then the program immediately terminates (i.e., is equivalent to skip).

(a) Give a BNF definition of the syntax of case conditionals. (Hint: it is helpful to

use a separate syntactic class (CaseList)for the list of cases between 'of' and
'endcase'.) [7 marks]

(b) Give a denotational semantics for case conditionals. (Hint: just as it was helpful to

introduce a new syntactic class (CaseList)in defining the syntax of case condi-
tionals, here it is useful to introduce a new semantic function

[cl]CL : Int x Store -+ Store,

such that for a CaseList cl, number n and Store S, [cl]cL(n, S) gives the Store that
results from choosing the first program in cl with label n and running it in state S.

[18 marks]

2. Give definitions for each of the following:

(a) Equational theory.

(b) Term algebra.

(c) Model of an equational theory.

(d) Initial model of an equational theory.

[6 marks]

[6 marks]

[7 marks]

[6 marks]

PAPER CODE COMP317 page 2 of 8 Continued

THE UNIVERSITY

of LIVERPOOL

3. In the lectures, we compared the denotational semantics of Appendix A to the algebraic
semantics of Appendix B by showing that for any model, A, of the algebraic semantics,
we could construct denotational functions

[P]:gm : Store ~ Store,

etc. (recall that these were partial functions). This question asks you to relate the two
semantics 'the other way round,' by showing that the denotational semantics allows us to
construct a model of the algebraic semantics. This model, let's call it D, interprets the sort
name Store as the set Var ~ Int of all functions from program variables to integers, and
interprets the supersort EStore as the set consisting of all such functions from program
variables to integers, plus a new element -.t. The idea is that -.t represents the 'result' of a
non-terminating computation; loosely, we say that

[P]pgm(S) =-1..

if [P]pgm is undefined on the Store S.

Given that D interprets Store and EStore as described above, sketch the remainder of
the definition of D as a model of the specification of Appendix B, by saying:

(a) how D interprets the remaining sort names;

(b) how D interprets the operations in STORE;

(c) showing that D satisfies the equation

[5 marks]

[10 marks]

var S : Store
var X : Var .
var E : Exp .
eq S ; X : = E [[X]] = S [[E]]

[10 marks]

4. The following program, written in the language specified in Appendix B, computes powers
of 2. Specifically, it sets the variable Ix to the value of 2'y:

'x := 1; 'i:= 0;
while not(/i is 'y)
do

'x := 2 * 'x ;
'i = 'i + 1

od

(a) Give a suitable precondition and postcondition to specify that the program sets I x to
the value of 2'y. (OBJ notation for exponentiation is - * *_.) [5 marks]

(b) Give a suitable invariant for the loop, which will allow you to prove the correctness
of the program. [10 marks]

(c) Give an OBJ proof score that will prove correctness of the program. [10 marks}

PAPER CODE COMP317 page 3 of 8 Continued

THE UNIVERSITY
of LIVERPOOL

5. Linked lists of integers are a data structure used to store sequences of integers. A linked
list is either empty ('null') or contains both an integer value (the 'head' of the list) and
another linked list (the 'tail' of the list). An abstract data type of linked lists can be
specified in OBJ as follows:

obj LINKED_LIST is
pr INT.

sort LList .

op null: -> LList

op head: LList ->
op tail: LList ->

op add: Int LList

Int .

LList .

-> LList .

var L : LList
var I : Int .

Supposewe wanted to extend the language described in Appendix B with a data type of
linked lists, so that we could write programs like the following, that computes the sum of
all the values in a linked list 1:

'count := 0;

while not isNull(l)
do

'count := 'count + head(l);
1 := tail(l)

od

Here, 1 is a linked-list variable. We can add this to the language of Appendix B by adding
the following declarations:

sort LLVar .

op 1 : -> LLVar .

(a) Give further OBJ declarations of sorts and operations (head, tail,isNulland
_: =-) that will allow programs like the one above in the language. [10 marks]

(b) Give OBJ equations that describe the semantics of these new constructs, using a new
operation- [[_J J that takes a Storeand a linked-listexpression,and returns a
LList. [15 marks]

PAPER CODE COMP317 page 4 of 8 Continued

eq head (add (I ,L)) = I

eq ta i 1 (add (I ,L)) = L
eq head (null) = 0
eq tail (null) = null .

endo

THE UNIVERSITY

of LIVERPOOL

Appendix A: The Language and its Semantics

Syntax
(Exp) :: = (Num) I (var) I (Exp) + (Exp) I (Exp) - (Exp) I (Exp) * (Exp)

(Tst) :: = true I false I (Exp) is (Exp) I (Exp) < (Exp)

I (Tst) and (Tst) I (Tst) or (Tst) I not (Tst)

(pgm) :: = skip I (var) : = (Exp) I (pgm) ; (pgm)

I if (Tst) then (pgm) else (pgm) fi
I while (Tst) do (pgm) od

Summary of the Denotational Semantics

. [N]EXP(S)= N

. [V]EXP(S)= S(V)

. [El + E2]EXP(S) = [EI]EXP(S) + [E2]EXP(S)

. [El - E2]EXP(S) = [EI]EXP(S) - [E2]EXP(S)

. [El * E2]EXP(S) = [EI]EXP(S)* [E2]EXP(S)

. [true]Tst(S) = true

. [false]Tst(S) = false

. [El is E2]Tst(S) = v, where v = true if [EI]EXP(S)= [E2]EXP(S),and v = false
otherwise

. [El < E2]Tst(S) - v, where v = true if [EI]EXP(S) < [E2]EXP(S),and v = false
otherwise

. [not T]Tst(S) = -, [T]Tst(S)

. [TIand T2]Tst(S)= [TI]Tst(S)1\ [T2]Tst(S)

. [TI or T2]Tst(S) = [TI]Tst(S)V [T2]Tst(S)

. [skiP]pgm(S)= S

. [X := E]pgm(S)= S[X +- [E]EXP(S)]

. [H ; P2]pgm(S) = [P2]pgm([PI]pgm(S))

. If [T]Tst(S) = true then [if T then PI else P2 fi]pgm = [H]pgm(S)

. If [T]Tst(S) = false then [if T then PI else P2 fi]pgm = [P2]pgm(S)

PAPER CODE COMP317 page 5 of 8 Continued

THE UNIVERSITY

of LIVERPOOL

. If [T]Tst(S) = false then [while T do P od]pgm(S) = S

. If [T]Tst(S) = true then [while T do P od]pgm = [while T do P od]pgm([P]pgm(S))

Appendix B: OBJ Semantics

*** the programming language: expressions ***
obj EXP is pr ZZ .

pr QID *(sort Id to Var) .
sort Exp.
subsorts Var Int < Exp .
op -+- : Exp Exp -> Exp [prec 10] .
op -*- : Exp Exp -> Exp [prec 8] .
op -- : Exp -> Exp .
op --- : Exp Exp -> Exp [prec 10] .

endo

obj TST is pr EXP .
sort Tst .
subsort Bool < Tst .

op -<_: Exp Exp -> Tst [prec 15] .
op -<=- : Exp Exp -> Tst [prec 15]
op _is- : Exp Exp -> Tst [prec 15] .
op not_: Tst -> Tst [prec 1] .
op _and_: Tst Tst -> Tst [prec 20] .
op _or_: Tst Tst -> Tst [prec 25]

endo

*** the programming language: basic programs ***
obj BPGM is pr TST .

sort BPgm.
op _:=- : Var Exp -> Bpgm [prec 20] .

endo

PAPER CODE COMP317 page 6 of 8 Continued

THE UNIVERSITY

of LIVERPOOL

*** semantics of basic programs ***
th STORE is pr BPGM .

sort Store.

op
op
op
var
vars
var
vars
vars
var

eq
eq
eq
eq
eq

eq
eq
eq
eq
eq
eq
eq

-[[-]] : Store
-[[-]] : Store

-;- : Store
S : Store.
Xl X2 : Var .

I : Int .

El E2 : Exp .
Tl T2 : Tst .

B : Bool .

Exp -> Int [prec 65] .
Tst -> Bool [prec 65] .
Bpgm -> Store [prec 60]

S [[B]] = B

S [[El is E2]]
S [[El <= E2]]
S [[El < E2]]
S [[not Tl]] =
S [[Tl and T2]]
S [[Tl or T2]]

= (S [[El]]) is (S [[E2]])
(S [[El]]) <= (S [[E2]])
(S [[El]]) < (S [[E2]]) .

not(S [[Tl]]) .

= (S [[Tl]]) and (S [[T2]])

(S [[Tl]]) or (S [[T2]]) .

=
=

=

eq S ; Xl : = El [[Xl]]
cq S ; xl := El [[X2]]

endth

= S [[El]]
S [[X2]] Xl =/= X2 .if=

*** extended programming language ***

obj PGM is pr BPGM .

sort Pgm.
subsort Bpgm < pgm .

op skip: -> pgm .

op -;- : pgm pgm -> pgm [assoc prec 50] .

op if_then_else_fi : Tst pgm pgm -> pgm [prec 40]
op while_do_od : Tst pgm -> pgm [prec 40] .

endo

PAPER CODE COMP317 page 7 of 8 Continued

S [[I]] = I

S [[- El]] = -(S[[El]])
S [[El - E2]] = (S[[El]]) - (S[[E2]])
S [[El + E2]] = (S[[El]]) + (S[[E2]])
S [[El * E2]] = (S[[El]]) * (S[[E2]])

THE UNIVERSITY

of LIVERPOOL

th SEM is pr PGM .

pr STORE.
sort EStore .

subsort Store < EStore .

op -;_: EStore pgm -> EStore [prec 60] .
var S : Store.
var T : Tst .

var Pi P2 : pgm .
eq S ; skip = S
eq S ; (Pi; P2) = (S; Pi) ; P2 .

cq S ; if T then Pi else P2 fi = S; Pi
if S[[T]].

cq S ; if T then Pi else P2 fi = S; P2
if not(S[[T]]) .

cq S ; while T do Pi od = (S; Pi) ; while T do Pi od
if S[[T]].

cq S ; while T do Pi od = S
if not(S[[T]]) .

endth

PAPER CODE COMP317 page 8 of 8 End

