
PAPER CODE NO.

I

EXAMINER: Grant Ma1colm

COMP317 DEPARTMENT: Computer Science Tel. No. 795 4244

, UNIVERSITY 0 F

LIVERPOOL

MAY 2007 EXAMINATIONS

Bachelor of Arts : Year 3

Bachelor of Engineering: Year 3
Bachelor of Science: Year 3

Doctor in Philosophy : Year 2
Master of Engineering: Year 3

Master of Science : Year 1

No qualification aimed for: X.ear1

SEMANTICS OF PROGRAMMING LANGUAGES

TIME ALLOWED: Two and a Half Hours

INSTRUCTIONS TO CANDIDATES

Answer FOUR questions.

If you attempt to answer more questions than the required number of questions (in any section),
the marks awarded for the excess questions answered will be discarded (starting with your
lowest mark).

PAPER CODE COMP317 page 1 of 8 Continued



",

, LIVERPoOL

1. The syntax and denotational semantics of a simple programming language are summarised
in Appendix A. Suppose we want to extend the syntax of arithmetic expressions with a
post-increment operator, to include expressions of the form V ++, where V is a variable
(i.e., of syntactic class (Var)). In any state 5, the value of the expression V ++ is just the
value of V in 5, but evaluating the expression has the side-effect of updating the state so
that the value of V is incremented by 1.

(a) Give a BNF description of the syntax of arithmetic expressions that includes expres-
sions of the form V ++. [4 marks]

(b) In order to give a denotational semantics for arithmetic expressions with side-effects,

we need to change the type of the denotation function [E]EXPfor arithmetic expres-
sions E, so that it returns both the value of the expression and the updated state. I.e.,
we want to define a denotation function

[E]ExP: 5tate -+ Int x State

by induction on the form of arithmetic expressions E. For example, in the case E has
the form El +E2, we define:

[El + E2]EXP(5) = (n1 + n2, 52)

where (n1,51) = [E1]EXP(5)

and (n2, 52) = [E2]EXP(51) .

This says first evaluate the leftmost expression E1,sgiving the integer value n1 and
updated state 51, then evaluate E2 in that updated state, giving the integer value n2
and updated state 52; the value of the expression is n1 + n2, and evaluation has the
side effect of updating the state to 52,

i. Complete the inductive definition of [E]ExP'including the case where E is of the
form V ++. [10 marks]

ii. Modify the definition of [V : =E]pgmto take account of the changes in the defi-
nition of [E]ExP' [6 marks]

iii. What other changes would need to be made to the denotational semantics of the
language? [5 marks]

2. Give definitions for each of the following:

(a) Equational theory.

(b) Term algebra.

(c) Model of an equational theory.

(d) Initial model of an equational theory.

[6 marks]

[6 marks]

[7 marks]

[6 marks]

3. Describe term rewriting in detail, illustrating the process with a simple example of an OBJ
specification of natural numbers and arithmetic operations such as addition and multiplica-
tion. [25 marks]

PAPER CODE COMP317 page 2 of 8 Continued



,LIVERPOOL

4. The following program, written in the language specified in Appendix B, computes expo-,
nentials. Specifically, it sets the variable' e to the value of 'x y:

'e := 1; 'i:= 0;
while not('i is 'y)
do

'e := 'x * 'e ;
'i = 'i + 1

od

(a) Give a suitable precondition and postcondition to specify that the program sets' p to
the value of 'x raised to the power of the value of ' y. (OBJ notation for exponentia-
tion is -* *_.) [5 marks]

(b) Give a suitable invariant for the loop, which will allow you to prove the correctness
of the program. [10 marks]

(c) Give an OBJ proof score that will prove correctness of the program. [10 marks]

5. An abstract data type of pairs of integers is given in the following OBJ specification:

obj PAIR is pr ZZ .

sort Pair.
tf~

op <-,-> : Int Int -> Pair.
ops (fst_) (snd_) : Pair -> Int .

vars I J : Int .
eq fst < I , J >
eq snd < I , J >

= I .
J .=

en do

We want to extend the programming language described in Appendix B with a data type of
pairs, so that we can write programs such as the following:

q := < 1 , 2 > ; (p).l := (q).2 ; (p).2 := (q).l

where p and q are variables of the programming language, (-) .1 and (-) .2 refer to the
first and second components of a pair, <El, E2> represents a pair whose first component
is the value of the integer expression El and whose second component is the value of the
integer expression E2, and the overloaded operator _:=- allows assignments either to a
'pair variable' such as p or q, or to a component of a pair variable, such as (p) .1 in the
assignment

(p).l := 23

PAPER CODE COMP31? page 3 of 8 Continued



"
<;,, LIVERPoOL

which sets the first component of p to be 23. The program above sets q to a pair whose
first component is 1 and whose second component is 2, then sets the first component of p
to the second component of q (i.e., the value 2), and finally sets the second component of
p to the first component of q. After the program has run, q has the value <1 , 2> and p has
the value <2 , 1>.

(a) Specify the syntax of the extended language by completing the following OBJ spec-
ification with subsort and operator declarations (one of the overloaded assignment
operators has been declared for you).

obj PAIR-PROGRAMS is ex PGM .

*** Variables of the programming language:
sort pairVar .

ops p q : -> pairVar .

*** First and second components of pairs:

sort PairComponent .

*** Expressions of type Pair:
sort PairExp .

*** Subsort and operation declarations:

. 8':'

*** Operatlons of the language:
op _:=- : PairComponent Exp -> BPgm
op _:=- : pairVar PairExp -> Bpgm .

endo

[7 marks]

(b) The semantics of the extended language can be specified by overloading the operator
- [ [_J ] as in the following OBJ module:

th PAIR-SEMANTICS is pr SEM .
pr PAIR.
pr PAIR-PROGRAMS.

op _CC_]] : Store PairExp -> Pair.

endth

Define the semantics of the extended language by giving suitable equations to include
in PAIR-SEMANTICS. [12 marks]

(c) Use the equations in your answer to part (b) to simplify the following tenn:

(s ; q := <1,2> ; (p).l := (q).2 ; (p).2 := (q).l)[[p]]

[6 marks]for a given Store s.

PAPER CODE COMP317 page 4 of 8 Continued



,LIVERPoOL

Appendix A: The Language and its Semantics

Syntax

(Exp) :: = (Num) I (var) I (Exp) + (Exp) I (Exp) - (Exp) I (Exp) * (Exp)

(Tst) :: = true I false I (Exp) is (EXp) I (Exp) < (Exp)

I (Tst) and (Tst) I (Tst) or (Tst) I not (Tst)

(pgm) :: = skip I (var) : = (Exp) I (pgm) i (pgm)

I if (Tst) then (pgm) else (pgm) fi

I while (Tst) do (pgm) od

Summaryof the DenotationalSemantics

. [N]EXP(S)= N

. [V]EXP(S)= S(V)

. [El + E2llEXP(S) = [EIllEXP(S)+ [E2llEXP(S)

. [El - E2]EXP(S)= [EIllEXP(S)- [E2llEXP(S)

. [El * E2llEXP(S)= [EIllEXP(S) * [E2]EX/S)

. [truellTst(S)= true t.<'

. [false]Tst(S) = false

. [El is E2llTs/S) = v, where v = true if [EIllEXP(S)= [E2]EXP(S),and v = false
otherwise

. [El < E2llTst(S) = v, where v = true if [E1]EXP(S)< [E2]EXP(S),and v = false
otherwise

. [not TllTst(S) = --,[T]Tst(S)

. [TI and T2llTst(S) = [TI]Tst(S)1\ [T2llTst(S)

. [TI or T2llTst(S)= [TIllTst(S)V [T2llTst(S)

. [skiPllpgm(S) = S

. [X : = E]pgm(S) = S[X +- [EllEXP(S)]

. [H i P2]pgm(S)= [P2]pgm([H]pgm(S))

. If [T]Tst(S) = true then [if T then PI else P2 fi]pgm = [H]pgm(S)

. If [T]Tst(S) = false then [if T then H else P2 fi]pgm = [P2]pgm(S)

. If [TllTst(S) = false then [while T do P odllpgm(S) = S

. If [TllTst(S) = true then [while T do P od]pgm= [while T do P od]pgm([P]pgm(S))

PAPER CODE COMP31? page 5 of 8 Continued



'"

.-, LIVERPOOL

Appendix B: OBJ Semantics

*** the programming language: expressions ***
obj EXP is pr ZZ .

pr QID * (sort Id to Var)
sort Exp.
subsorts Var Int < Exp .
op -+- : Exp Exp -> Exp [prec 10]
op -*- : Exp Exp -> Exp [prec 8]
op -- : Exp -> Exp .

op --- : Exp Exp -> Exp [prec 10]
endo

obj TST is pr EXP .

sort Tst .

subsort Bool < Tst .

op -<_: Exp Exp -> Tst [prec 15] .

op -<=- : Exp Exp -> Tst [prec 15]

op _is- : Exp Exp -> Tst [prec 15]
op not- : Tst -> Tst [prec 1] .

op _and- : Tst Tst -> Tst [prec 20]
op _or- : Tst Tst -> Tst [prec 25]

endo
&,<'

*** the programming language: basic programs ***
obj BPGM is pr TST .

sort BPgm.
op _:=- : Var Exp -> BPgm [prec 20]

endo

PAPER CODE COMP317 page 6 of 8 Continued



.;

, LIVERPoOL

*** semantics of basic programs ***

th STORE is pr BPGM .

sort Store.

op -[ [_J] : Store
op -[[-]] : Store
op _i- : Store
var S : Store.
vars Xl X2 : Var .

var I : 1nt .

vars El E2 : Exp .
vars Tl T2 : Tst .

var B : Bool .

Exp -> 1nt [prec 65] .
Tst -> Bool [prec 65] '.
BPgm -> Store [prec 60]

eq S i Xl := El [[Xl]]
cq S i Xl := El [[X2]]

endth

S [[El]]

S [[ X2] ] Xl =/= X2 .

=
if=

*** extended programming language ***

obj PGM is pr BPGM .

sort Pgm.
subsort BPgm < pgm .

op skip: -> pgm .
op _i- : Pgm pgm -> pgm [assoc prec 50] .
op if_then_else_fi : Tst Pgm pgm -> Pgm [prec 40]
op while_do_od : Tst pgm -> pgm [prec 40] .

endo

PAPER CODE COMP317 page 7 of 8 Continued

eq S [[I]] = I

eq S [[- El]] = -(S[[El]])

eq S [[El- E2]] =
( S [ [El] ]) - ( S [ [E2] ] )

eq S [[El + E2]] = (S [ [El] ]) + (S [ [E2] ] )

eq S [[El * E2]] =
( S [ [El] ]) * (S [ [E2] ] )

eq S [[B]] = B.

eq S [[El is E2]] = (S [[El]]) is (S [[E2]])

eq S [[El <= E2]] = (S [[El]]) <= (S [[E2]])

eq S [[El < E2]] = (S [[El] ]) < (S [(82]])

eq S [[not Tl]] = not(S [[Tl]]) .

eq S [[Tl and T2]] = (S [[Tl]]) and (S [[T2]])

eq S [[Tl or T2]] = (S [[Tl] ]) or (S [[T2] ] )



,LIVERPOOL

th SEM is pr PGM .

pr STORE.
sort EStore .

subsort Store < EStore .

op _i_: EStore pgm -> EStore [prec 60]
var S : Store.
var T : Tst .

var Pi P2 : Pgm .
eq S i skip = S .
eq S i (Pi i P2) = (S i Pi) i P2 .

cq S i if T then Pi else P2 fi = S i Pi
if S[[T]] .

cq S i if T then Pi else P2 fi = S i P2
if not(S[[T]]).

cq S i while T do Pi od = (S i Pi) i while T do Pi od-
if S[[T]].

cq S i while T do Pi od = S
if not(S[[T]]) .

endth

6."

PAPER CODE COMP317 page 8 of 8

,

.

End


