
\ PAPER CODE NO.
COMP317

EXAMINER; Grant Ma1colm

DEPARTMENT: Computer Science
TEL. NO. 7946794

'.

THE UNIVERSITY

of LIVERPOOL

MAY 2006 EXAMINATIONS

Bachelor of Arts : Year 3

Bachelor of Engineering: Year 3
Bachelor of Science: Year 3

Doctor in Philosphy : Year 2
I

Master of Engineering : Year 2
Master ofPhilosphy : Year 2

No qualification aimed for : Year 1

IJi!F

SEMANTICS OF PROGRAMMING LANGUAGES

TIME ALLOWED: Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

Answer four questions only.

If you attempt to answer more questions than the required number of questions (in any section),
the marks awarded for the excess questions will be discarded (starting with your lowest mark).

PAPER CODE COMP317 page 1 of 8 Continued

THE UNIVERSITY

of LIVERPOOL

1. Many languages, such as C and Java, allow assignments to be both programs and expres-
sions. We could modify the language defined in Appendix A by allowing an assignment
such as

'y := 1

to be both a valid program and a valid expression, so that we can also write assignments
such as

'X := 2 * (/y := 1)

which should have the effect of setting I y to 1 and I x to 2. In general, an assignment of
the formV : = E, whenviewedas an expression,has the valueof the expressionE; as a
side-effect, it also updates the store by assigning the value of E to the variable V.

(a) Modify the BNF syntax of the programming language given in Appendix A so that
assignments can be both expressions and programs. [7 marks]

(b) In order to give a denotational semantics for arithmetic expressions with side-effects,

we need to change the type of the denotation function [E]EXPfor arithmetic expres-
sions E, so that it returns both the value of the expression and the updated state. Le.,
we want to define a denotation function

[E]EXP: Store ~ Intx Store
/!!f"

by induction on the form of arithmetic expressions E. For example, in the case E has
the form El +E2, we define:

[El + EZ]EXP(5)= (nl + n2, 5z)

where (nI, 51) = [EdEXP(5)
and (n2,52) = [EZ]ExP(5l).

This says first evaluate the leftmost expression El, giving the integer value nl and
updated state 51, then evaluate Ez in that updated state, giving integer value nz and
updated state 52; the value of the expression is nl + nz, and evaluation has the side
effect of updating the state to 52.

i. Complete the inductive definition of [E]EXP'including the case where expression
E is an assignment. [10 marks]

ii. Modify the definition of [V : = E]pgm to take account of the changes in the

definition of [E]EXp. [8 marks]

2. Give detailed definitions for the following:

(a) Equation and equational theory.

(b) Term algebra

(c) Term rewriting

[9 marks]

[7 marks]

[9 marks]

PAPER CODE COMP317 Continuedpage 2 of 8

;-
i . ~.

-,

, "
.

THE UNIVERSITY

of LIVERPOOL

3. The algebraic specification in Appendix B defines the semantics of a simple programming
language. We can use the denotational semantics given in Appendix A to construct a

model D of this specification, where DExp is the set of well-formed expressions in the
language, DTst is the set of well-formed boolean expressions, Dpgm is the set of well-
formed programs, DStore is the set of functions Var --t 1nt (i.e., the set of functions that
take a variable and return an integer), and DEStore is the,set DStore U fl}, (i.e., a new
element, 1- is added to represent the 'undefined' store). In this model, the operator

-;- : Store pgm -> EStore

is interpreted as the function D_;- . DStorexDpgm --t DEStore where for all S E DStore

and P E Dpgm,

D_;_(S, P) = [P]pgm(S) .

(a) Carry on the definition of D, by defining the functions that interpret the' following
operations: '

\
[5 marks]

[5 marks]

[5 marks]

1. _:=- : Var Exp -> Pgm

ii. -[[-]] : Store Exp -> Int

iii. - [[-]] : Store Tst -> Bool .
I

(b) Regarding the equations of the specification in Appendix B, what do we need to show
in order to conclude that D is a model of the specification? Illustrate xour answer with
reference to the following equation:

4. The following program, written in the language specified in Appendix B, computes powers
of 2. Specifically, it sets the variable Ix to the value of 2'y:

'x := 1; 'i:= 0;

while not(/i is 'y)
do

'x := 2 * 'x ;
'i = 'i + 1

od

(a) Give a suitable precondition and postcondition to specify that the program sets I x to
the value of 2'y. (OBJ notation for exponentiation is - * *_.) [5 marks]

(b) Give a suitable invariant for the loop, which will allow you to prove the correctness
of the program. [10 marks]

(c) Give an OBJ proof score that will prove the correctness of the program. [10 marks]

PAPER CODE COMP317 page 3 of 8 Continued

lif*

var S : Store
var X : Var

var E : Exp
eq S ; X := E [[X]] = S [[E]] [10 marks]

THE UNIVERSITY

of LIVERPOOL

5. Linked lists of integers are a data structure used to store sequences of integers. A linked
list is'either .empty ('null') or contains both an integer value (the 'head' of the list) and
another linked list (the 'tai l' of the list). An abstract data type of linked lists can be
specified in OBJ as follows:

obj LINKED_LIST is pr INT.

sort LList .

op null: -> LList
op head: LList ->
op tail: LList ->
op add: Int LList

Int .
LList .

-> LList .

var L : LList

var I : Int .

eq
eq

endo

head (add (I , L))

tail (add(I,L))

/= I .
L .=

I

Suppose we wanted to extend the language described in Appendix B with a data type of
linked lists, so that we could write programs like the following, that computes the sum of
all the values in a linked list list:

.
'count := 0;
while not isNull(list)
do

'count := 'count + head(list);
list := tail(list)

od

Here, 1i s t is a linked-list variable. We can add this to the language of Appendix B by
adding the following declarations:

sort LLVar .

op list: -> LLVar .

We would also need a sort for the linked-list expressions that could be assigned to this
variable.

(a) Give further OBJ declarations of sorts (e.g., linked-list e1-pressions) and operations
(head, tail,isNull and _: =-) that will allow programs like the one above in
the language. [10 marks]

(b) Give OBJ equations that describe the semantics of these new constructs, using a new
operation - [[_J J that takes a Store and a linked-list expression, and returns a
LList. [15 marks]

PAPER CODE COMP317 page 4 of 8 Continued

-,.

c, .,.

1.

'.

THE UNIVERSITY

of LIVERPOOL

. Appendix A: The Language and its Semantics

Syntax

(Exp) :: = (Num) I (var) I (Exp) + (Exp) I (Exp) - (Exp) I (Exp) * (Exp)

(T s t) :: = t ru elf a 1 s e I (Exp) i s (Exp) I (Exp) < (Exp)

I (Tst) and (Tst) I (Tst) or (Tst) I not (Tst)

(pgm) :: = skip I (Var) : = (Exp) I (pgm) ; (pgm)

I if (Tst) then (pgm) else (pgm) fi

I while (Tst) do (pgm) od

Summary of the Denotational Semantics

. [N]EXP(S) = N

. [V]EXP(S)= S(V)

" [El + E2]EXP(S)= [EI]EXP(S)+ [E2]EXP(S)

. [El - E2]EXP(S) = [EI]EXP(S) - [E2]ExP(S)

. [El * E2]ExP(S) = [EI]EXp(S)* [E2]EXP(S)

/

. [true]Tst(S) = true

. [false]Tst(S) = false

Iii!'"

. [El is E2]Tst(S) = v, where v = true if [EI]EXP(S)= [E2]EXP(S),and v = false
otherwise

. [El < EdTst(S) = v, where v = true if [EI]EXP(S) < [E2]EXP(S),and v = false
otherwise

. [not T]Tst(S) = , [T]Tst(S)

. [TI and T2]Tst(S) = [TI]Tst(S)1\ [T2]Tst(S)

. [TI or T2]Tst(S)= [TI]Tst(S)V [T2]Tst(S)

'\

. [skiP]Pgm(S) = S

. [X : =E]pgm(S)= S[X f- [E]EXP(S)]

. [PI; P2]pgm(S) = [P2]pgm([PI]Pgrn(S))

. If [T]Tst(S) = true then [i f T then PI else P2 fi]pgm = [PI]pgm(S)

. If[T]Tst(S) = false then [if T then PI else P2fi]pgrn = [P2]pgm(S)

PAPER CODE COMP31? page 5 of 8 Continued

THE UNIVERSITY

of LIVERPOOL

. If [T]Tst(S) = false then [while T do P od]pgm(S) = S

. If[T]TsJS) = true then [while T do P od]pgm = [while T do P od]pgm([P]pgm(S))

Appendix B: OBJ Semantics

*** the programming language: expressions ***

obj EXP is pr ZZ 0

pr QID *(sort Id to Var) 0

sort Expo
subsorts Var Int < Exp 0

op -+- : Exp Exp -> Exp [prec 10] 0

op -*- : Exp Exp -> Exp [prec 8] .

op -- : Exp -> Exp .

op --- : Exp Exp -> Exp [prec 10] .

endo

obj TST is pr EXP .

sort Tst .

subsort Bool < Tst .

op -<- : Exp Exp -> Tst [prec 15] .
op -<=- : Exp Exp -> Tst [prec 15]

op _is_: Exp Exp -> Tst [prec 15] 0

op not_: Tst -> Tst [prec 1] .

op _and_: Tst Tst -> Tst [prec 20] .

op _or- : Tst Tst -> Tst [prec25] .
endo

/

~

*** the programming language: basic programs ***
obj BPGM is pr TST .

sort BPgm.
op _:=- : Var Exp -> BPgm [prec 20]

endo

PAPER CODE COMP317 page 6 of 8 Continued

., . c.-

~

.- 1.

THE UNIVERSITY

of LIVERPOOL

*** semantics of basic programs ***
th STORE is pr BPGM .

sort Store.

op
op
op
var
vars
var
vars
vars
var

eq
eq
eq
eq
eq

eq
eq
eq
eq
eq
eq
eq

-[[-]] : Store

- [[-]] : Store
-;- : Store

S : Store.
Xl X2 : Var .

I : Int .

El E2 : Exp .
Tl T2 : Tst .

B : Bool .

Exp -> Int [prec 65] .
Tst -> Bool [prec 65]
Bpgm -> Store [prec 60]

S [[B]] = B
S [[El is E2]]

S [[El <= E2]]

S [[El < E2]]

S [[not Tl]] =
S [[Tl and T2]]

S [[Tl or T2]]

= (S [[El]]) is (S [[E2]])
(S [[El]]) <= (S [[E2]])

(S [[El]]) < (S ~[E2]]) .
not(S [[Tl]]) ..

= (S [[Tl]]) and (S [[T2]])

(S [[Tl]]) or (S [[T2]]) .

=
=

=

eq S ; Xl := El [[Xl]]
cq S ; Xl : = El [[X2]]

endth

= S [[El]]

S [[X2]] Xl =/= X2 .if=

*** extended programming language ***
obj PGM is pr BPGM .

sort Pgm.

subsort Bpgm < pgm .

op skip: -> pgm .
op -;- : pgm pgm -> pgm [assoc prec 50] .
op if_then_else_fi : Tst Pgm Pgm -> pgm [prec 40]
op while_do_od : Tst pgm -> pgm [prec 40]

endo

PAPER CODE COMP317 page 7 of 8 Continued

S [[I]] = I

S [[- El]] = - (S [[El]])

S [[El - E2]] =
(s [[El]]) - (S[[E2]])

S [[El + E2]] = (S[[El]]) + (S[[E2]])
S [[El * E2]] = (S[[El]]) * (S[[E2]])/

THE UNIVERSITY

of LIVERPOOL

th SEM is pr PGM .

pr STORE.
sort EStore .
subsort Store < EStore .

op -;_: EStore pgm -> EStore [prec 60]
var S : Store.
var T : Tst .

var Pi P2 : Pgm .
eq S ; skip = S
eq S ; (Pi; P2) = (S; Pi) ; P2
cq S ; if T then Pi else P2 fi = S; Pi

if SeCT]] .
cq S ; if T then Pi else P2 fi = S; P2
if not(S[[T]]).

cq S ; while T do Pi od = (S; Pi) ; while T do Pi od
if SeCT]] .

cq S ; while T do Pi od = S
if not(S[[T]]) .

endth /

4f!!F

PAPER CODE COMP317 page 8 of 8

--"- -
~.:

End

