

THE UNIVERSITY
of LIVERPOOL

MAY 2005 EXAMINATIONS

Bachelor of Science : Year 3
Master of Science : Year 1

Formal Methods

TIME ALLOWED : $2 \frac{1}{2}$ hours

INSTRUCTIONS TO CANDIDATES

Answer four questions only.
If you attempt to answer more questions than the required number of questions (in any section), the marks awarded for the excess questions will be discarded (starting with your lowest mark).

1. This question concerns the basic structures used within Z specifications.
(a) In Z, functions, sequences and bags can all be represented as sets of maplets. Explain how and give simple examples to illustrate your answer.
(b) If $f==\{a \mapsto 1, b \mapsto 3, c \mapsto 4\}$ and $g==\{a \mapsto 3, b \mapsto 3, d \mapsto 5, e \mapsto 1\}$ then what is the value of $(\operatorname{ran} f) \backslash(\operatorname{ran} g)$?
(c) If $f(x)=((x \times x)+3)$ then what is the value of $2 \otimes(\operatorname{map} f\langle 2,4,5,7\rangle)$?
(d) If $Z==\llbracket$ red, red, white, blue, green, blue \rrbracket then what is the value of $(Z \oplus\{$ white \mapsto $3\}) \oplus\{$ red $\mapsto 1\}$?
(e) Write down a logical formula to represent the fact that, for any Natural Number (n) you could choose, we can always find two integers, one bigger then n, one smaller than n.
2. We must write a Z specification of the members of a family and have developed the initial state space schema below (where $P E R S O N$ is the set of all people):
_FamilyRecord \qquad
family : \mathbb{P} PERSON
age $: P E R S O N ~ ↔ 0 \ldots 120$
domage $=$ family
(a) Write a Z specification for the operation

$$
\text { Add(name? : PERSON, age? : } 0 \ldots \text { 120) }
$$

which adds a new family member (name?) of age (age?) to the FamilyRecord.
(b) Write a Z specification for the operation

$$
\text { CheckAge(name? : PERSON, age! : } 0 \text {. . 120) }
$$

which returns the age (age!) associated with the family member (name?).
Note: the operation should be undefined if the given person is not a family member.
(c) How would you modify the CheckAge operation above so that it is robust (i.e. it will be defined for any name supplied)? Assume that a REPORT type exists for reporting errors.
(d) Write a Z specification for the operation Young (names! : \mathbb{P} PERSON) which returns the set of family members who are less than 20 years old.

THE UNIVERSITY of LIVERPOOL
3. [About fundamentals of Temporal Logic.]
(a) We wish to say that
"at some point in the future, either a will always be true or b will be true in the next moment."

How might we represent this in temporal logic?
(b) How does temporal logic extend classical logic? In your answer give an example of a statement that is more naturally represented in temporal, rather than classical, logic.
(c) How do branching temporal logics differ from linear temporal logics, and what additional operators do they typically provide?
(d) Consider the semantics of propositional, discrete, linear temporal logic, and show why the formula $\square(p \Rightarrow \bigcirc p)$ implies the formula $p \Rightarrow \square p$
4. Below is a temporal specification for a simple message-passing system consisting of two components, P and Q.

(a) What is the behaviour of Spec_{P} on its own?
(b) Given Comms $=$$\square(b \Rightarrow \diamond x)$ what is the behaviour of $\operatorname{Spec}_{P} \wedge \operatorname{Spec}_{Q}$ \wedge Comms
(c) Given Comms $=\square(b \Rightarrow \diamond x) \wedge \square(w \Rightarrow \diamond d)$ what is the behaviour of

$$
\operatorname{Spec}_{P} \wedge \operatorname{Spec}_{Q} \wedge \text { Comms }
$$

(d) Explain, informally, why

$$
\operatorname{Spec}_{P} \wedge \operatorname{Spec}_{Q} \wedge \square(b \Rightarrow \diamond x) \wedge \square(w \Rightarrow \diamond a)
$$

implies

THE UNIVERSITY of LIVERPOOL
5. This question concerns the foundations of model checking.
(a) Given a finite state structure, M, represented as a finite-state automaton, and a temporal formula, φ, how would we use the automata-theoretic approach to model checking to establish $M \models \varphi$?
(b) Describe two problems with the standard model checking approach and explain what techniques are being developed to tackle these.
(c) If the model checking process fails then what information is returned? What does this say about the execution of the system being modelled?
6. In this question, we consider the Promela language. In answering the sub-parts of the question, please give simple examples to illustrate your answers.
(a) In Promela, how are processes defined and executed?
(b) Channels are used to communicate between Promela processes. How does the size of the channel affect the behaviour of the processes reading from, or writing to, the channel?
(c) Assertions and Never Claims are used to carry out verification of temporal properties. What is the difference between these approaches in terms of their coding, their implementation and the temporal formulae they typically represent?

Glossary of Z notation

Names

a, b	identifiers
d, ϵ	declarations (e.g., $a: A ; b, \ldots: B \ldots$)
f, g	functions
m, n	numbers
p, q	predicates
s, t	sequences
x, y	expressions
A, B	sets
C, D	bags
Q, R	relations
S, T	schemas
X	schema text (e.g., $d, d \mid p$ or S)

Definitions

$a==x \quad$ Abbreviated definition
$a::=b \mid \ldots$ Data type definition (or $a::=b\langle\langle x\rangle\rangle \mid \ldots$)
[a] Introduction of a given set (or $[a, \ldots]$)
$a_{-} \quad$ Prefix operator
_a Postfix operator
$-a_{-} \quad$ Infix operator

Logic

true Logical true constant
false Logical false constant
$\neg p \quad$ Logical negation
$p \wedge q \quad$ Logical conjunction
$p \vee q \quad$ Logical disjunction
$p \Rightarrow q \quad$ Logical implication $(\neg p \vee q)$
$p \Leftrightarrow q \quad$ Logical equivalence $(p \Rightarrow q \wedge q \Rightarrow p)$
$\forall X \bullet q \quad$ Universal quantification
$\exists X \bullet q \quad$ Existential quantification
$\exists_{1} X \bullet q$ Unique existential quantification
let $a==x ; \ldots \bullet p$ Local definition

Sets and expressions

$x=y \quad$ Equality of expressions
$x \neq y \quad$ Inequality $(\neg(x=y))$
$x \in A \quad$ Set membership
$x \notin A \quad$ Non-membership $(\neg(x \in A))$
$\varnothing \quad$ Empty set
$A \subseteq B \quad$ Set inclusion
$A \subset B-$ Strict set inclusion $(A \subseteq B \wedge A \neq B)$
$\{x, y, \ldots\}$ Set of eiements
$\{X \bullet x\} \quad$ Set comprehension
$\lambda X \cdot x$ Lambda-expression - function
$\mu X \bullet x \quad$ Mu-expression - unique value
let $a==x ; \ldots \bullet y$ Local definition
if p then x else y Conditional expression
(x, y, \ldots) Ordered tuple
$A \times B \times \ldots$ Cartesian product
$\mathbb{P} A \quad$ Power set (set of subsets)
$\mathbb{P}_{1} A \quad$ Non-empty power set
F $A \quad$ Set of finite subsets
$\mathbb{F}_{1} A \quad$ Non-empty set of finite subsets
$A \cap B \quad$ Set intersection
$A \cup B \quad$ Set union
$A \backslash B \quad$ Set difference
$\bigcup A \quad$ Generalized union of a set of sets
$\cap A . \quad$ Generalized intersection of a set of sets
first $x \quad$ First element of an ordered pair
second x Second element of an ordered pair
\#A Size of a finite set

Relations

$A \longleftrightarrow B \quad$ Relation $(\mathbb{P}(A \times B))$
$a \mapsto b \quad$ Maplet $((a, b))$
$\operatorname{dom} R \quad$ Domain of a relation
$\operatorname{ran} R \quad$ Range of a relation
id $A \quad$ Identity relation
$Q \circ R \quad$ Forward relational composition
$Q \circ R \quad$ Backward relational composition $(R ; Q)$
$A \triangleleft R \quad$ Domain restriction
$A \nLeftarrow R \quad$ Domain anti-restriction
$A \triangleright R \quad$ Range restriction
$A \triangleright R \quad$ Range anti-restriction
$R(A) \quad$ Relational image
iter $n R \quad$ Relation composed n times
$R^{n} \quad$ Same as iter $n R$
$R^{\sim} \quad$ Inverse of relation $\left(R^{-1}\right)$
$R^{*} \quad$ Reflexive-transitive closure
$R^{+} \quad$ Irreflexive-transitive closure
$Q \oplus R \quad$ Relational overriding $((\operatorname{dom} R \notin Q) \cup R)$
$a \underline{R} b \quad$ Infix relation

Functions

$A \nrightarrow B \quad$ Partial functions
$A \longrightarrow B \quad$ Total functions
$A \nLeftarrow B \quad$ Partial injections
$A:-B \quad$ Total injections
$A \nrightarrow B \quad$ Partial surjections
$A \rightarrow B \quad$ Total surjections
$A \backsim B \quad$ Bijective functions
$A \amalg B \quad$ Finite partial functions
$A: \Pi B \quad$ Finite partial injections
$f x \quad$ Function application (or $f(x)$)

Numbers	
Z	Set of integers
\mathbb{N}	Set of natural numbers $\{0,1,2, \ldots\}$
\mathbb{N}_{1}	Set of non－zero natural numbers $(\mathbb{N} \backslash\{0\})$
$m+n$	Addition
$m-n$	Subtraction
$m * n$	Multiplication
$m \operatorname{div} n$	Division
$m \bmod n$	Modulo arithmetic
$m \leq n$	Less than or equal
$m<n$	Less than
$m \geq n$	Greater than or equal
$m>n$	Greater than
$\operatorname{succ} n$	Successor function $\{0 \mapsto 1,1 \mapsto 2, \ldots\}$
$\min n$	Number range
$\min A$	Minimum of a set of numbers
$\max A$	Maximum of a set of numbers

Sequences

$\operatorname{seq} A \quad$ Set of finite sequences
$\operatorname{seq}_{1} A \quad$ Set of non－empty finite sequences
iseq $A \quad$ Set of finite injective sequences
〈〉 Empty sequence
$\langle x, y, \ldots\rangle$ Sequence $\{1 \mapsto x, 2 \mapsto y, \ldots\}$
$s^{\wedge} t \quad$ Sequence concatenation
－／s Distributed sequence concatenation
head $s \quad$ First element of sequence（ $s(1)$ ）
tail $s \quad$ All but the head element of a sequence
last s Last element of sequence（ $s(\# s)$ ）
front s All but the last element of a sequence
rev $s \quad$ Reverse a sequence
squash f Compact a function to a sequence
$A 1 s \quad$ Sequence extraction $(\operatorname{squash}(A \triangleleft s))$
$s \upharpoonleft A \quad$ Sequence filtering（ $\operatorname{squash}(s \triangleright A))$
s prefix t Sequence prefix relation $\left(s^{\complement} v=t\right)$
s suffix t Sequence suffix relation $\left(u^{\wedge} s=t\right)$
s in $t \quad$ Sequence segment relation $\left(u^{\wedge} s^{\wedge} v=t\right)$
disjoint A Disjointness of an indexed family of sets
A partition B Partition an indexed family of sets
Bags
bag $A \quad$ Set of bags or multisets $\left(A \nrightarrow N_{1}\right)$
［］Empty bag
【x，$y, \ldots \rrbracket$ Bag $\{x \mapsto 1, y \mapsto 1, \ldots\}$
count $C x$ Multiplicity of an element in a bag
$C \sharp x \quad$ Same as count $C x$
$n @ C$ Bag scaling of multiplicity
$x \in C \quad$ Bag membership
$C \sqsubseteq D \quad$ Sub－bag relation
$C \uplus D \quad$ Bag union
$C \uplus D \quad$ Bag difference
items s Bag of elements in a sequence

Schema notation

Vertical schema．

New lines denote＇；＇and＇\wedge＇．The schema name and predicate part are optional．The schema may subsequently be referenced by name in the document．

Axiomatic definition．

$d \quad$ The definitions may be non－unique．The pred－ icate part is optional．The definitions apply globally in the document．
 Generic definition．
The generic parameters are optional．The def－ initions must be unique．The definitions apply globally in the document．
$S \widehat{=}[X]$ Horizontal schema
$[T ; \ldots \mid \ldots]$ Schema inclusion
$z . a \quad$ Component selection（given $z: S$ ）
$\theta S \quad$ Tuple of components
$\neg S \quad$ Schema negation
pre S Schema precondition
$S \wedge T \quad$ Schema conjunction
$S \vee T \quad$ Schema disjunction
$S \Rightarrow T \quad$ Schema implication
$S \Leftrightarrow T \quad$ Schema equivalence
$S \backslash(a, \ldots)$ Hiding of component（s）
$S \upharpoonright T$ Projection of components
$S ; T \quad$ Schema composition $(S$ then $T)$
$S \gg T \quad$ Schema piping（ S outputs to T inputs）
$S[a / b, \ldots] \begin{aligned} & \text { Schema component renaming（ } b \text { becomes } a \text { ，} \\ & \text { etc．）}\end{aligned}$
$\forall X \bullet S$ Schema universal quantification
$\exists X \bullet S \quad$ Schema existential quantification
$\exists_{1} X \bullet S$ Schema unique existential quantification

Conventions

a ？Input to an operation
$a!\quad$ Output from an operation
a State component before an operation
$a^{\prime} \quad$ State component after an operation
$S \quad$ State schema before an operation
$S^{\prime \prime} \quad$ State schema after an operation
$\Delta S^{\prime} \quad$ Change of state（normally $S \wedge S^{\prime \prime}$ ）
$\Xi S \quad$ No change of state（normally
$\left.\left[S \wedge S^{\prime \prime} \mid \theta S=\theta S^{\prime}\right]\right)$
Jonathan P．Bowen
Oxford University Computing Laboratory
Wolfson Building，Parks Road，OXFORD OX1 3QD，UK
Email：Jonathan．Bowen＠comlab．ox．ac．uk

