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1. This question concerns the basic structures used within Z specifications.

(a) In Z, functions, sequences and bags can all be represented as sets of maplets. Explain
how and give simple examples to illustrate your ansWer. [4]

(b) Iff ==' {a f--+1,b f--+3,c f--+4}and g == {a f--+ 3,b f-7 3,d f-7 5,e f--+ I} then

what is the valueof (ranf) \ (ran g)? , [6]

(c) If f(x) = ((x x x) + 3) then'what is the value of 2 @ (mapf(2, 4, 5,7))? [6]

(d) If Z == [red, red, white, blue, green, blue] then what is the value of (Z EB{white f--+
3})EB{redf-71}? . [6]

(e) Write down a logical formula to represent the fact that, for any Natural Number (n)
you could choose, we.can always find two integers, one bigger then n, one smaller
than n. [3]

2. We must write a Z specification of the members of a family and have developed the initial
state space schema below (where PERSON is the set of all people):

FamilyRecord
family: ]PPERSON
age: PERSON -1-7 0 . . 120

domage = family

(a) Write a Z specification for the operation

Add(name? : PERSON, age? : 0 ..120)

which adds a new family member (name?) of age (age?) to the FamilyRecord.

(b) Write a Z specification for the operation

[7]

CheckAge(name? : PERSON, age! : 0, .120)

which returns the age (age!) associated with the family member (name?).

Note: the operation should be undefined if the given person is not a family member.
[5]

(c) How would you modify the CheckAge operation above so that it is robust (i.e. it will
be defined for any name supplied)? Assume that--a-REEQRT type exists for reporting- ~
errors. . [6]

(d) Write a Z specification for the operation Young(names! : IPPERSON) which returns
the set of family members who are less than 20 years old, [7]

PAPER CODE COMP313/COMP513 page 2 of 4 Continued



r-:--., .~ .
O~1A !1:I>b;.,

THE UNIVERSITY
of LIVERPOOL

3. [About fundamentals of Temporal Logic. ]

(a) We wish to say that

"at some point in the future, either a will always be true or b will be true in
the next moment."

How might we represent this in temporal logic? [3]

(b) How does temporal logic extend classical logic?" In your answer give an example of a
statement that is more naturally represented in temporal, rather than classical, logic.

[8]
~

(c) How do branching temporal logics differ from linear temporal logics, and what addi-
tional operators do they typically provide? [4]

(d) Consider the semantics of propositional, discrete, linear temporal logic, and show
why the formula 0 (p '* Op) implies the formulap '* Dp [10]

4. Below is a temporal specification for a simple message-passing system consisting of two
components, P and Q.

Specp' 0 [ ~

start '* a

]

a '* Ob
b '* Oc
d '* Oe

[

X '* OY
]SpecQ: 0 1\ Y '* . <)w

(a) What is the behaviour of Specp on its own? [6]

(b) Given Comms = D (b '* <)x) what is the behaviour of Specp 1\ SpecQ 1\ Comms

[7]

(c) GivenComms = D (b '* <)x) 1\ D(w,* <)d) what is the behaviour of

Specp 1\ SpecQ 1\ Comms

[7]

(d) Explain, informally, why

Specp 1\ SpecQ 1\ D(b,* <)x) 1\ D(w,* <)a)

- implies D<)c -~
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5. This question concerns the foundations of model checking.

(a) Given a finite state structure, M, represented as a finite-state automaton, and a tempo-
ral formula, cp,how would we use the automata-theoretic approach to model checking
to establish M F cp? [10]

(b) Describe two problems with the standard model checking approach and explain what
techniques are being developed to tackle these. [10]

(c) If the model checking process fails then what information is returned? What does
this say about the execution of the system being modelled? [5]

6. In. this question, we consider the Promela language. In answering the sub-parts of the
question, please give simple examples to illustrate your answers.

"

(a) I.nPromela, how are processes defined and executed? [7]

(b) Channels are used to communicate between Promela processes. How does the size
of the channel affect the behaviour of the processes reading from, or writing to, the
channel? [6]

(c) Assertions and Never Claims are used to carry out verification of temporal proper-
ties. What is the difference between these approaches in terms of their coding, their
implementation and the temporal formulae they typically represent? [12]

~
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Glossary of Z notation

Names

a,b
d,e
f,g
m,n
p,q
s,t
x,y
A,B
C,D
Q,R
S,T
X

Definitions

let a == x; ... . y Local definition

if p then ;/.:else y Conditional expression

(x,y, ...) Ordered tuple
A XB X... Cartesian product
P A Power set (set of subsets)

PI A Non-empty power set
F A Set of finite subsets

FlA. Non-empty set of finite subsets r

A n B Set intersection
A U B Set union

A \ B Set difference
UA Generalized union of a set of sets
nA . Generalized intersection of a set of sets

first x First element of an ordered pair

second x Second element of an ordered pair
#A Size of a finite set

identifiers

declarations (e.g., a: A; b, ... : B...)
functions
numbers

predicates
sequences
expressions
sets

bags
relations
schemas

schema text (e.g., d, dip or 8)

Relations
a == x Abbreviated definition

a ::= b I Data type definition (or a ::= b((x); I...)
[oJ Introduction of a given set (or [a, ...])
(L Prefix operator

_a Postfix operator
_a- Infix operator

Logic

q =:>p)

A+-+B
at--+b
domR
ranR
idA

Q9R
QoR
A<lR
A~R
At>R
Af7R

ROA~
iter n R
Rn
R'"

R*

R+

Q$R
aRb

true Logical true constant

false Logical false constant
-, p Logical negation
p 1\ q Logical conjunction
p V q Logical disjunction

p * q Logicalimplication(0 p V q)

P {:}q Logicalequivalence(p =:> q 1\

VX . q Universal quantification
3 X . q Existentialquantification
31X . q Uniqueexistentialquantification
let a == x; ... . p Localdefinition

Sets and expressions Functions

x=y
xi=y
:tEA
:1:It A
0

Ac;,B
..4(:1)-

{:r,y,...}
{X. x}
AX. :r

fIX. :1.:

Equality of expressions

Inequality (0 (:1: = y))
Set membership

Non-membership (-. (:r E A))
Empty set
Set inclusion

Strictset inclusion(.4~ B /\ A =F B)
Set of elements

Set comprehension
Lambda-expression - function

Mu-expression - unique value

A-+-+B
A-+B
A>-t+B
A >--,cB
A-++B
A--+B
A:--.:.B
A--tH-B
A >-t1-7B

fx

Relation (P(A x B) )
Maplet «( Ct,b))
Domain of a relation

Range of a relation
Identity relation

Forward relational composition

Backward relational composition (R 9 Q)
Domain restriction

Domain anti-restriction
Range restriction
Range anti-restriction

Relational image
Relation composed n times
Same as iter n R

Inverse of relation (R-l)
Reflexive-transitive closure
Irreflexive-transitive closure

Relational overriding ( (dom R <EJ Q) u R)
Infix relation

Partial functions

Total functions

Partial injections
Total injections
Partial surjections

Total sUJ:jections
Bijective functions

Finite partial functions
Finite partial injections

Function application (or f(x)



Numbers

Z
N

NI .

m+n
m-n
m* 17.

mdivn.
m modn

m::S;n
m<n

m?:n
m>n

suce 17.
m..n
min A.
maxA.

Sequences

./

Set of integers

Set of natural numbers {a, 1,2, ...}

Set of non-zero natural numbers (N \ {O})
Addition
Subtraction

Multiplication
Division
Modulo arithmetic

Less than or equal
Less than

Greater than or equal
Greater than

Successorfunction {OM 1,1 M 2, ...}
Number range
Minimum of a set of numbers

Maximum of a set of numbers

seq A. Set of finite sequences

seql A. Set of non-empty finite sequences
'iseq A. Set of finite injective sequences

() Empty sequence
(x, y, ...) Sequence{I M x, 2 MY, ...}

s ~ t Sequence concatenation

~ / s Distributed sequence concatenation

head s First element of sequence ( s (1) )
tail s All but the head element of a sequence

last s Last element of sequence ( s (#s) )
fr'ont s All but the last element of a sequence
rell s Reverse a sequence

squash f Compact a function to a sequence

A. '\ s Sequenceextraction(squash(.4 <J.s))
s r .4 Sequencefiltering( squash(s l>.4) )
8 prefix t Sequence prefix relation (8 r-.. V = t)
s suffix t Sequence suffix relation ("Lt,r-..S = t)
s in t Sequence segment relation (1.),r-..S ~ V = t)

disjoint A. Disjointness of an indexed family of sets
.4 partition B Partition an indexed family of sets

Bags

bag A Set of bags or multisets (A. -t-;- N])

[] Empty bag

[;t:,y,...] Bag{:r.-+I,YMl,...}
C'O'tmt C:I: Multiplicity of an element in a bag
C ~:I~ Sameas'count ex
n () C Bag scalingof multiplicity
x E C Bag membership
C ~ D Sub-bagrelation
C Ii!D JJ>agunion

CI:;JD

item;s s
Bag difference .

Bag of elements in a sequence

Schema notation

S Vertical schema.

E' New lines denote' ; , and' 1\'. The schema
name and predicate part are optional. The

p schema may subsequently be referenced by
name in the document.

. Axiomatic definition.

The definitions may be non-unique. The pred-
icate part is optional. The definitions apply
globally in the document.

[a, ...]= Generic definition.

E, The generic parameters are optional. The def-
initions must be unique. The definitions apply

P globally in the document.

S ==[X] Horizontal schema
[T;...I...] Schema inclusion
z. a Component selection (given z : ,'l)
()S Tuple of components
.., S Schema negation

pre S Schema precondition
S !\ T Schema conjunction
S V T Schema disjunction
S '* T Schema implication
S {::>T Schema equivalence

S \ (a, ...) Hidingofcomponent(s)
S rT Projection of components
S 9 T Schemacomposition(S then T)
S »T Schemapiping(S outputsto T inputs)

5'[ /b ]
Schema component renaming (b becomes a,

, a , ...
)etc.

\:!X . S Schemauniversalquantification
3 X . S Schemaexistentialquantification

31 X . S Schema unique existential quantification

~

Conventions

a?
a!
a

Input to an operation
Output from an operation
State component before an operation
State component after an operation
State schema before an operation
Stat~a after an operation- ---
Change of state (normally 5' 1\ ,5")
No change of state (normally
[5' 1\ S'leS = OSt])

at

S
st
/j.S'
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