
t

,..
PAPER CODE NO.

I

EXAMINER: Michael Fisher

COMP313 DEPARTMENT: Computer Science Tel. No. 4-6701

THE UNIVERSITY

of LIVERPOOL

MAY 2006 EXAMINATIONS

Bachelor of Arts: Year 3

Bachelor of Engineering : Year 3
Bachelor of Science: Year 3 "

Bachelor of Science: Year 4

No qualification aimed for: Year 1

Ii!'"

Formal Methods

TIME ALLOWED : 2~ hours

INSTRUCTIONS TO CANDIDATES

Answer four questions only.

If you attempt to answer more questions than the required number of questions (in any section),
the marks awarded for the excess questions will be discarded (starting with your lowest mark).

PAPER CODE COMP313 page 1 of 6 Continued

THE UNIVERSITY
of LIVERPOOL

1. This question concerns the basic structures used within Z specifications.

(a) In Z, what is the difference between a total function and a surjection?

(b) Given a bag

[4]

B == [ford,toyota,fiat,ford, toyota,honda,ford]

then what is dam B and what is ran B? How will dam B and ran B change if we add
another 'fiat' to B? [8]

(c) Ifj and g are both functions of the same type, then under what circumstances (if any)
will

dom({ U g) = (domj) U (dam g) ?

Give an appropriate example to illustrate your answer. [9]

(d) Given r: JP{apple,banana,grape,peach}, write down all the values r can possibly
have. [4]

I'

2. We are developing a Z specification for a family tree and have developed the initial state
61:".

space schema below (where PEOPLE is the set of all people):

Ancestry

~ Is-parenLilf : PEOPLE ~ JPPEOPLE

Here, is-p arenLoj ({red) = {emily, david} if ({red f-7 {emily, david}) E is-parenLoj

(a) What invariant might we add to the above state space schema in order to ensure that
no one is a parent of themselves? [5]

(b) Write a Z specification for an AddChild operation, which adds a child for an already
existing parent.

The operation should take inputs child? : PEOPLE and parent? : PEOPLE. [8]

(c) How would you describe, using Z notation, the set of all people who are grandpar-
~u? D]

(d) Write a Z specification for a GetChildren operation, which returns the set of children
for a given parent.

The operation should take parent? : PEOPLE as input and return children! : JPPEOPLE
as output. [5]

PAPER CODE COMP313 page 2 of 6 Continued

~

THE UNIVERSITY

of LIVERPOOL

3. This question concerns the fundamentals of Temporal Logic.

(a) We wish to say that

"at some point in the future, it will always be the case that both x and y occur
in the subsequent moment."

How might we represent this in temporal logic? [4]

(b) How does temporal logic extend classical logic? In your answer give an example of a
statement that is more naturally represented in temporal, rather than classical, logic.

[8]

(c) Show, either by using formal semantics or by using a clear explanation, why, in a
propositional, discrete, linear temporal logic, the formula a U 0 b implies the formula
OVb. [7]

(d) Give an overview of two different temporal logics, both in terms of their underlying
model of time and in terms of the temporal operators used. [6]

I

8!r'

4. This question concerns the relationship between temporal logic and programs.

(a) Give a temporal formula capturing a semantics ofthe statement in a simple imperative
programming language:

(if (x>2) then x:=l else x:=x+2); end [8]

(b) What temporal formula would we write to describe the property that, at some point
in the above program's execution, the variable x is guaranteed to have a value less
than 5? Is this a liveness property, a safety property, or neither? [5]

(c) Usually, temporal specifications of distributed systems comprise the specifications
on the components, together with a Comms formula. For two distributed compo-
nents, with temporal specifications Specx and Specy, what is the usual purpose of the ~

Comms formula in

SpeCA 1\ SpecB 1\ Comms

Give examples of three typical (and meaningful) types of formulae that we would use
as Comms and explain what constraints these three represent. [12]

PAPER CODE COMP313 page 3 of 6 Continued

r~

THE UNIVERSITY

of LIVERPOOL

5. What is model checking, and why is it useful?

Write an essay on this, bringing in as many elements as appropriate, including

. the aim of model checking,

. the theory behind model checking,

. the uses of model checking,

. the mechanisms for model checking,

. the problems with model checking and

. potential solutions to some of these problems.

I

/If!'

PAPER CODE COMP313 page 4 of 6

[25]

Continued

';.

THE UNIVERSITY

of LIVERPOOL

6. Consider the following Promela code describing a three process system where:

. process A sends information to process B via channel a2b,

. process B sends information to process C via channel b2c, and

. process C sends information to process A via channel c 2 a.

proctype A (chan in, out)
{

51:

int total;
total = 0;
total = (total+3)%8;

out!tota1;
printf("A sent %d\n", total);
in?total;
assert(total != 4);
printf("A received %d\n", total);
if

:: (total != 0) -> goto 51;
:: (total == 0) -> out!total
fi }

1* initial state *1

1* assertion *1

/

proctype B (chan in, out)
{

51:
int total;
in?total;

printf ("B
if

:: (total

received %d\n", total);
r

!= 0) -> total = (total+3)%8; out!total;

printf("B sent %d\n", total);
goto 51;

:: (total == 0) -> out!total
fi }

proctype C (chan in, out)
{

51:

init {

int total;

in?total;
printf ("C
if

:: (total

received %d\n", total);

!= 0) -> total = (total+3)%8; out!total;

printf("C sent %d\n", total);
goto 51;

:: (total == 0) -> out! total

fi }

chan a2b = [lJ of { int };
chan b2c = [lJ of { int };
chan c2a = [lJ of { int };

atomic { run A(c2a, a2b); run B(a2b, b2c); run C(b2c, c2a) }

PAPER CODE COMP313 page 5 of 6 Continued

, .
<

THE UNIVERSITY

of LIVERPOOL

Note that %is the modulo arithmetic operator. So, for example (1 7 %8) =1 and (15 %8) =7.
..

(a) If we execute this program what sequence of outputs can we expect?

(b) Will the assertion in process A succeed? Explain your answer.

(c) What will happen if we change the assertion in progess A to be

assert(total != 1)

[10]

[8]

[7]

f

/ill'

PAPER CODE COMP313 page 6 of 6 End

Glossary of Z notation

Names

a,b
d,e
f,g
m,n
p,q
s,t
x,y
A,B
C,D
Q,R
S,T
X

Definitions

let a ==x; '" .y Local definition

if p then x else y Conditional expression
(x, y, ...) Ordered tuple
A XB X'" Cartesian product
P A Power set (set of subsets)

PIA Non-empty power set
F A Set of finite subsets

F 1 A Non-empty set of finite subsets
A n B Set intersection
A u B Set union

A \ B Set difference

UA Generalized union of a set of sets
nA Generalized intersection of a set of sets

first x First element of an ordered pair

- second x Second element of an ordered pair
#A Size of a finite set

identifiers

declarations (e.g., a: A; b,..:: B...)
functions
numbers

predicates
sequences
expressions
sets

bags
relations
schemas

schema text (e.g., d, dip or S)

Relations
a == x Abbreviated definition

a ::= bI...Data type definition (or a ::= b((x» I...)
[a] Introductionof a givenset (or [a, ...))
a- Prefixoperator
_a Postfixoperator
_a- Infixoperator

Logic

A~B
a.-+b
domR
ranR
id A

Q;R
QoR
A<lR
A..:3R
AI>R
A~R

R~A~
iter n R
Rn
R'"

true Logical true constant
false Logicalfalse constant
-, p Logical negation
p !\ q Logical conjunction

p V q Logical disjunction
p,* q Logicalimplication(-.p V q)

P {:}-q Logical equivalence (p '* q !\ q '* p)
\ifX . q Universal quantification
3 X . q Existentialquantification
31X . q Uniqueexistentialquantification
let a == x; P Local definition

R*
R+

Q(JJR
aRb

Sets and expressions Functions

x=y
x,#y
xEA
x~A
0
A~B
ACB
{x,y,...}
{X. x}
)..X. x
f.LX.x

Equality of expressions

Inequality (-. (x =Y».
Set membership

Non-membership (-. (x EA»
Empty set
Set inclusion

Strict set inclusion(A ~ B !\ A i= B)
Set of elements .

Set comprehension
Lambda-expression - function

Mu-expression - unique value

A--H-B
A-+B
A>-++B
A>-+B
A-t7)-B
A-+B
A>--*B
A-IH-B
A»+B

fx

Relation(P(A x B)
Maplet «(a, b))
Domain of a relation

Range of a relation
Identity relation

Forward relational composition

Backward relational composition (R '9Q)
Domain restriction

Qomain anti-restriction
Range restriction ,-

(!!f" Range anti-restriction
Relational image

Relation composed n times

Same as iter n If,

Inverse of relatio~ (R-l)
Reflexive-transitive closure
Irreilexive-transitive closure

Relational overriding ((dom R -<EJ Q) u R)
Infix relation

Partial functions
Total functions

Partial injections

Total injections
Partial surjections

Total surjections
Bijective functions

Finite partial functions

Finite partial injections

Function application (or f(x)

Numbers

:2

N

r~'h

rn+n
rn-n

rn* n
rndivn

in mod n

m::S;n

rn<n

m ~ n
m> n
succn
m..n
minA
maxA

Set of integers

Set of natural numbers {O, 1, 2, ...}
Set of non-zero natural numbers (N \ {O})
Addition
Subtraction

Multiplication
Division
Modulo arithmetic

Less than"orequal
Less than

Greater than or equal
Greater than

Successor function {OI-t I, 11-t 2, ...}
Numberrange .

Minimum of a set of numbers
Maximum of a set of numbers

Sequences

seq A Setof finitesequences
seql A Set ofnon-emptyfinitesequences
iseq A Set of fiqiteinjectivesequences
() Emptysequence
(x, y, ...) Sequence{11-t x, 21-t V, ...}
s t Sequenceconcatenation
/ 8 Distributed sequence. concatenation

head 8 Ftrst element of sequence (8 (1))
tail 8 All but the head element of a sequence

la8t 8 Last element of sequence (8(#8)

front s All but the last element of a sequence
rev s Reverse a sequence

squash f Compact a function to a sequence

A 1 s Sequenceextraction(squa8h(A <Is))
8 r A Sequence filtering (squash(8 t> A))
s prefix t Sequence prefix relation (s v = t)
s suffix t Sequencesuffixrelation(u s =t)
8 in t Sequencesegmentrelation(u s v =t)

disjoint A Disjointnessof an indexedfamilyof sets
A partition B Partitionanindexedfamilyof sets

Bags

bag A Set ofbags or multisets(A --+-+I\h)

~ Emptybag
[x, V, ...] Bag {x I-t 1,V I-t 1, ...}
count C x Multiplicityof an elementin abag

C ti x Sameascountex
n 0 C Bag scalingof multiplicity
x E C Bag membership
C b D Sub-bagrelation
C I:tJD Bag union

Ci::JD
itemss

Bag difference

Bag of elements in a sequence"

Schema notation

S Vertical5chema. .

E New lines denote'; , and '1\'. The schema
name and predicate part are optional. The

p schema may subsequently be referenced by
. namein the document.

Axiomatic definition.

The definitionsmaybe non-unique.Thepred-
. icate part is optional. The definitions apply
globally in the document.

[a, ...]= Generic definition.

E The generic parameters are optional. The def-
initions must be unique. The definitions apply

P globally in the document.

S ==[X] Horizontal schema
[T; ...1...] Schema inclusion
Z.a Component selection (given z : S)
eS Thpleof components
.., S Schemanegation
pre S Schemaprecondition
S !\ T Schemaconjunction

/

S V T Schemadisjunction

S ':=?T Schemaimplication
S {:} T Schemaequivalence

S \ (a, ...) Hidingof componel!t(s),

S rT Projection of components

S ; T M'"Schema composition (S then T) .

S »T Schemapiping(S outputsto T inputs)

S[/ b] Schema component renaming (b becomesp., .
a ,... etc.) . .."

'r/X . S Schemauniversalquantification
3 X . S Schemaexistentialquantification

31 X . S Schema unique existential quantification'

~

Conventions ";;;"

a?

a!

a

a'

Input to an operation
Output from an operation
State component before an operation
State component after an operation

State schema before an operation
State schema after an operation

Change of state (normally S /\ S')
No change of state (normally
[S /\ S'IBS = BS'])

.'<::.

';-'.

.'.

S

S'
~S

3S

Jonathan P. Bowen

Oxford University Computing Laboratory
Wolfson Building, Parks Road, OXFORD OXl 3QD, UK

Email: Jonathan.Bowen@comlab.ox.ac . uk

