THE UNIVERSITY
of LIVERPOOL

JANUARY EXAMINATIONS 2007

Bachelor of Arts : Year 3
Bachelor of Science: Year 3
No qualification aimed for: Year 1

Efficient Sequential Algorithms

TIME ALLOWED : Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

Please answer four of the following five questions. If you answer more than four questions, then credit will be given to the best four answers. Each question is worth 25 marks.

THE UNIVERSITY of LIVERPOOL

1. Greedy algorithms: the Activity Selection problem.

An instance is a set $S=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ of activities. Each activity A_{i} has a start time s_{i} and a finish time f_{i} with $0 \leq s_{i}<f_{i}$. Two activities A_{i} and A_{j} are compatible if $s_{i} \geq f_{j}$ or $s_{j} \geq f_{i}$. The goal is to choose a subset of compatible activities that is as large as possible.
(a) Briefly describe an efficient greedy algorithm that solves this problem.
(7 marks)
(b) Simulate the algorithm on this input.

i	1	2	3	4	5	6	7	8
s_{i}	4	7	7	10	9	8	15	4
f_{i}	8	20	9	19	10	16	17	18

(7 marks)
(c) Now suppose that each activity A_{i} has a weight w_{i} and the goal is to choose a subset of compatible activities with maximum total weight. Consider the following greedy algorithm. Let A be an activity in S with maximum weight. Form a sub-problem P from S by removing activity A and removing any activities that are incompatible with activity A. Recursively choose an optimal solution Y for the instance P. Return $Y \cup\{A\}$. Show that this algorithm does not always return a solution of maximum total weight.
(7 marks)
(d) If we wanted to prove that the algorithm from part (c) was correct, we would try to establish two properties

- There is always an optimal solution for S which includes A, and
- If Y is an optimal solution to P then $Y \cup\{A\}$ is as large as possible amongst feasible solutions for S that include A.
Are either of these properties true for the algorithm from part (c)? If so, which one or ones?
(4 marks)

THE UNIVERSITY of LIVERPOOL

2. Pattern matching.

For this question, the alphabet \mathcal{A} will be $\{a, b\}$.
(a) Give a pseudo-code description of the simple brute-force algorithm for finding all instances of a pattern P in a text T.
(b) Simulate the process of running the algorithm from part (a) on the pattern $P=a b a b$ and the text $T=a a b a a b a b$. How many comparisons of characters does the algorithm make when it is run with inputs P and T ?
(c) Recall the finite automaton pattern matching algorithm for a pattern P with length m.

```
Finite-Automaton-Matching \((T, \delta, m)\)
    \(n \leftarrow\) length \((T)\)
    \(q \leftarrow 0\)
    for \(i \leftarrow 1\) to \(n\)
        \(q \leftarrow \delta(q, T[i])\)
        if \(q=m\)
            print "pattern \(P\) occurs with shift \(i-m\) in \(T\) "
```

Construct the finite automaton (the transition function δ) so that this algorithm can be used to find matches of the pattern P from part (b).
(d) Simulate the process of running the algorithm from part (c) (using your transition function) on the pattern P and text T from part (b).

THE UNIVERSITY of LIVERPOOL
3. Dynamic Programming: Longest Common Subsequence.

Recall the algorithm LCS. Given two sequences X and $Y, \operatorname{LCS}(X, Y)$ constructs the tables $l c s$ and b.

```
LCS \((X, Y)\)
\(m \leftarrow\) length \((X)\)
    \(n \leftarrow\) length \((Y)\)
    for \(i \leftarrow 1\) to \(m l c s[i, 0] \leftarrow 0\)
    for \(j \leftarrow 0\) to \(n l c s[0, j] \leftarrow 0\)
    for \(i \leftarrow 1\) to \(m\)
        for \(j \leftarrow 1\) to \(n\)
            if \(x_{i}=y_{j}\)
                        \(l c s[i, j] \leftarrow l c s[i-1, j-1]+1\)
            \(b[i, j] \leftarrow " \longleftarrow "\)
            else if \(\operatorname{lcs}[i-1, j] \geq l c s[i, j-1]\)
            \(l c s[i, j] \leftarrow l c s[i-1, j]\)
            \(b[i, j] \leftarrow " \uparrow "\)
            else
            \(l c s[i, j] \leftarrow l c s[i, j-1]\)
            \(b[i, j] \leftarrow " \leftarrow "\)
    return \(l c s\) and \(b\)
```

(a) Let S be the sequence $a a b$ and let T be the sequence $a b a b$. simulate the algorithm LCS with input $(X, Y)=(S, T)$ to construct the tables $l c s$ and b.
(b) What is the length of the longest common subsequence of S and T ?
(c) Give an efficient algorithm Print-LCS that takes inputs X, b, i and j where X is a length- m sequence and Y is a length- n sequence and $0 \leq i \leq m$ and $0 \leq j \leq n$ and b is the table b produced by $\operatorname{LCS}(X, Y)$. The output should be a longest common subsequence of X_{i} and Y_{j}.
(d) Give an efficient algorithm NEw-Print-LCS that takes inputs $X, Y, l c s, i$ and j where X is a length $-m$ sequence and Y is a length- n sequence and $0 \leq i \leq m$ and $0 \leq j \leq n$ and lcs is the table lcs produced by $\operatorname{LCS}(X, Y)$. The output should be a longest common subsequence of X_{i} and Y_{j}.

THE UNIVERSITY of LIVERPOOL
4. Matchings.
(a) What is a matching in a graph?
(2 marks)
(b) Give an example of a maximal matching that is not a maximum matching. ($\mathbf{3}$ marks)
(c) Consider the following variant of an algorithm that we studied in class. The input is a graph G whose m edges are labelled e_{1}, \ldots, e_{m}.
$M \leftarrow \emptyset$
For $i \leftarrow 1$ to m

$$
\text { if } e_{i} \text { is not adjacent to any } f \in M
$$

return M

$$
M \leftarrow M \cup\left\{e_{i}\right\}
$$

Give an example of a graph G with edge labels e_{1}, \ldots, e_{m} so that, when the algorithm is run with input G, the output M is a maximal matching of G that is not a maximum matching of G.
(d) Simulate the algorithm on your example from Part (c).
(e) Give an efficient algorithm for finding a maximum matching in a tree.
(f) Simulate your algorithm on an example.

THE UNIVERSITY of LIVERPOOL

5. Complexity Theory: NP-Completeness and Approximation.
(a) Define the complexity class P.
(5 marks)
(b) Define the complexity class NP.
(c) What does it mean for a problem to be NP-Complete?
(d) Recall the problem Vertex Cover, which we showed to be NP-complete.

Vertex Cover

- Input: An undirected graph G and an integer k
- Output: Is there a set U of k vertices of G such that for every edge (u, v) of G, at least one of u and v is in U ?
A Boolean formula is a "monotone-2 clause" if it is the OR of two Boolean variables, for example ($x_{1} \vee x_{2}$) is a monotone-2 clause and so is $\left(x_{3} \vee x_{4}\right)$. There is no negation allowed in monotone 2-clauses. A "monotone 2-SAT formula" is the AND of some monotone-2 clauses. For example, $F=\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{4} \vee x_{5}\right)$ is a monotone 2-SAT formula. Consider the following computational problem.

Monotone 2-SAT

- Input: A Monotone 2-SAT formula F and an integer j
- Output: Is there a set of j variables of F, such that if these variables are set to TRUE and all other variables are set to FALSE $_{\sigma}$ every clause is satisfied?
Show that Vertex Cover $\xrightarrow{\text { poly }}$ Monotone 2-SAT
(e) How well can the Vertex Cover problem be approximated?

