THE UNIVERSITY of LIVERPOOL

JANUARY 2004 EXAMINATIONS

Bachelor of Science : Year 2

Decision, Computation and Language

TIME ALLOWED : 2 Hours

INSTRUCTIONS TO CANDIDATES

Answer all questions in Section 1 and two questions from Section 2.
If you attempt to answer more questions than the required number of questions (in any section), the marks awarded for the excess questions will be discarded (starting with your lowest mark).

THE UNIVERSITY of LIVERPOOL

Section 1

Answer all questions in this section.

1. Define what is meant by the following terms,
a. A language over an alphabet, Σ. ($\mathbf{3}$ marks)
b. The language resulting from the concatenation of two languages. (3 marks)
c. The language generated by a formal grammar $G=(V, T, P, S)$. (3 marks)
d. A null-transition automaton, (also known as an ϵ-transition automaton). (3 marks)
e. The Church-Turing Hypothesis. (3 marks)
2. For the non-deterministic finite automaton below,

a. Describe its state transition function $-\delta: Q \times\{0,1\} \rightarrow \mathcal{P}(Q)$. (8 marks)
b. Give the full computation tree of this automaton when it is given the word $\mathbf{0 1 1 0 1}$ as input, indicating whether this word is accepted or not. (7 marks)

THE UNIVERSITY of LIVERPOOL

3. For the right linear grammar, $G=(V, \Sigma, S, P)$ in which $V=\left\{V_{0}, V_{1}, V_{2}, V_{3}\right\}, \Sigma=\{0,1\}$, $S=V_{0}$, and P contains the production rules

$$
\begin{aligned}
& V_{0} \rightarrow 1 V_{1} \\
& V_{1} \rightarrow 1\left\|0 V_{2}\right\| 1 V_{2} \| 1 V_{3} \\
& V_{2} \rightarrow 0 V_{1} \| 1 V_{1} \\
& V_{3} \rightarrow \epsilon\left\|0 V_{1}\right\| 1 V_{1}
\end{aligned}
$$

a. Construct a (non-deterministic) finite automaton, $M=\left\langle Q, \Sigma, q_{0}, F, \delta\right\rangle$ for which a word $w \in\langle 0,1\rangle^{*}$ is accepted by M if and only if w can be generated by G. (9 marks)
b. Show that the word $\mathbf{1 0 0 1 1 1}$ can be generated by G, giving the sequence of productions that are applied starting from $V_{0} \rightarrow 1 V_{1}$. (6 marks)
4. Give examples of each of the following:
a. A context-free language that is not a regular language. (5 marks)
b. A recursive language that is not a context-free language. (5 marks)
c. A recursively enumerable language that is not a recursive language. (5 marks)

Full credit requires a formal definition of a language with the relevant properties (but not a proof).

THE UNIVERSITY of LIVERPOOL

Section 2

Answer two questions in this section.
5. For the context-free grammar, $G=(V, \Sigma, S, P)$ with $V=\{A, B, C, S\} ; \Sigma=\{a, b, c\}$; start symbol S and production rules, P, defined by

$$
\begin{aligned}
& S \rightarrow S B S\|a B d\| C a \\
& A \rightarrow B A\|A S\| a c \\
& B \rightarrow B a A\|A C\| b \\
& C \rightarrow C S\|A B C S\| c
\end{aligned}
$$

a. Identify all of the production rules of G that do not meet the conditions of Chomsky Normal Form. (6 marks)
b. Carefully show how G may be modified to give a context-free grammar $G^{\prime}=\left(V^{\prime}, \Sigma, S, P^{\prime}\right)$ such that G^{\prime} generates exactly the same language as G and for which every production rule in P^{\prime} is in Chomsky Normal Form. (9 marks)
c. Suppose the production rules $C \rightarrow c$ and $B \rightarrow b$ in G are replaced by $C \rightarrow A B$ and $B \rightarrow C b$. What property does the language generated by this new grammar have? Briefly justify your answer. (5 marks)
6. For the deterministic finite automaton $M=\left(Q, \Sigma, q_{0}, F, \delta\right)$ in which $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}$; $\Sigma=\{0,1\} ; F=\left\{q_{4}\right\}$ and $\delta: Q \times \Sigma \rightarrow Q$ is given by

q	σ	$\delta(q, \sigma)$	q	σ	$\delta(q, \sigma)$
q_{0}	0	q_{1}	q_{0}	1	q_{5}
q_{1}	0	q_{2}	q_{1}	1	q_{3}
q_{2}	0	q_{1}	q_{2}	1	q_{5}
q_{3}	0	q_{5}	q_{3}	1	q_{4}
q_{4}	0	q_{5}	q_{4}	1	q_{3}
q_{5}	0	q_{5}	q_{5}	1	q_{5}

a. Describe in detail how a regular expression, R is constructed from M with the property that the language $-L(R)$ - described by R is exactly the language $L(M)$ of words accepted by M. (Hint: Recall Arden's Rule: if R, S, and T are (regular) languages for which the relationship $R=S \cdot R \cup T$ holds and $\epsilon \notin S$, then $R=S^{*} \cdot T$ is the unique solution for R) ($\mathbf{1 5}$ marks)
b. Why is the qualification $\epsilon \notin S$ significant in the statement of Arden's Rule? ($\mathbf{5}$ marks)

THE UNIVERSITY of LIVERPOOL

7.

a. State the Pumping Lemma for Context-Free Languages. (5 marks)
b. Using the Pumping Lemma for Context-Free Languages, show that the language $L_{M U L T}$ over the alphabet $\{a, b, c\}$ defined by

$$
L_{M U L T}=\left\{a^{r} b^{s} c^{r * s}: r, s \geq 1\right\}
$$

is not a Context-Free language. ($\mathbf{1 0}$ marks)
c. Suppose L_{1} and L_{2} are two languages over the same alphabet Σ and define the language $L_{D I F F}$ to be

$$
L_{D I F F}=\left\{w \in \Sigma^{*}: w \in L_{1} \text { and } w \notin L_{2}\right\}
$$

If L_{1} is recursively enumerable but not recursive, and L_{2} is recursive, is the language $L_{D I F F}$ recursively enumerable? Briefly justify your answer. (5 marks)

