

THE UNIVERSITY of LIVERPOOL

JANUARY 2006 EXAMINATIONS

Bachelor of Science: Foundation Year
Bachelor of Science: Year 1
Bachelor of Science: Year 2
No qualification aimed for: Year 1

DECISION, COMPUTATION AND LANGUAGE

TIME ALLOWED: Two Hours

INSTRUCTIONS TO CANDIDATES

Answer all questions in Section 1 and two questions from Section 2. Section 1 is worth 60% of the marks and Section 2 is worth 40% of the marks.

If you attempt to answer more than the required number of questions (in any section), the marks awarded for the excess questions will be discarded (starting with your lowest mark).

THE UNIVERSITY
of LIVERPOOL

Section 1

Answer all questions in this section.

1. Define what is meant by the following terms,
a. A word over an alphabet, Σ. (3 marks)
b. The language resulting from the concatenation of two languages. (3 marks)
c. The language accepted by a non-deterministic finite automaton $M=\left(Q, \Sigma, q_{0}, F, \delta\right)$. (3 marks)
d. A context-free grammar. (3 marks)
e. The Church-Turing Hypothesis. (3 marks)
2. For the non-deterministic finite automaton below,

a. Describe its state transition function $-\delta: Q \times\{0,1\} \rightarrow \mathcal{P}(Q)$. (8 marks)
b. Give the full computation tree of this automaton when it is given the word $\mathbf{0 1 0 1 0 1}$ as input, indicating whether this word is accepted or not. (7 marks)

THE UNIVERSITY of LIVERPOOL
3. For the deterministic, finite automaton $M=\left(Q,\{0,1\}, q_{0}, F, \delta\right)$ in which $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$, $F=\left\{q_{3}, q_{4}\right\}$ and $\delta: Q \times\{0,1\} \rightarrow Q$ is given by

q	σ	$\delta(q, \sigma)$	q	σ	$\delta(q, \sigma)$
q_{0}	0	q_{1}	q_{0}	1	q_{2}
q_{1}	0	q_{2}	q_{1}	1	q_{3}
q_{2}	0	q_{4}	q_{2}	1	q_{1}
q_{3}	0	q_{4}	q_{3}	1	q_{0}
q_{4}	0	q_{0}	q_{4}	1	q_{3}

a. Construct a right-linear grammar, $G=\langle V, T, S, P\rangle$ such that G generates a word w if and only if w is accepted by M. (9 marks)
b. Give the sequence of productions that are applied in this grammar to generate the word 011010. (6 marks)
4. Give examples of each of the following:
a. A context-free language that is not a regular language. (5 marks)
b. A recursive language that is not a context-free language. (5 marks)
c. A recursively enumerable language that is not a recursive language. (5 marks)

Full credit requires a formal definition of a language with the relevant properties (but not a proof).

THE UNIVERSITY
of LIVERPOOL

Section 2

Answer two questions in this section.
5.
a. Carefully describe the construction of a deterministic finite automaton equivalent to the non-deterministic finite automaton shown below
(12 marks)

b. Consider the language, $L_{S U B T R A C T}$ over $\{0,1\}$, defined by the following set of words,

$$
L_{S U B T R A C T}=\left\{0^{n} \cdot 1^{m} \cdot 0^{n-m}: n>m \geq 0\right\}
$$

Using the Pumping Lemma for Regular Languages, prove that $L_{S U B T R A C T}$ is not a regular language. (8 marks)
6.
a. For the deterministic finite automaton $M=\left(Q, \Sigma, q_{0}, F, \delta\right)$ with $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}$; $\Sigma=\{0,1\}, F=\left\{q_{4}\right\}$ and δ given by

q	σ	$\delta(q, \sigma)$	q	σ	$\delta(q, \sigma)$
q_{0}	0	q_{1}	q_{0}	1	q_{2}
q_{1}	0	q_{0}	q_{1}	1	q_{3}
q_{2}	0	q_{5}	q_{2}	1	q_{0}
q_{3}	0	q_{4}	q_{3}	1	q_{5}
q_{4}	0	q_{3}	q_{4}	1	q_{5}
q_{5}	0	q_{5}	q_{5}	1	q_{5}

Show in detail how a regular expression, R_{M}, is constructed with the property that a word is accepted by M if and only if it belongs to the language described by the regular expression R_{M}.
[Hint: Use Arden's Rule - if R, S, T, are regular languages for which $\epsilon \notin S$ and $R=$ $S \cdot R+T$, then $\left.R=S^{*} \cdot T\right]$ ($\mathbf{1 2}$ marks)

THE UNIVERSITY of LIVERPOOL

b. Suppose $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ is an alphabet of k symbols and $L \subseteq \Sigma^{*}$ is a language over Σ. Consider the language $\operatorname{bin}(L)$ over the alphabet $\{0,1\}$ defined as

$$
\operatorname{bin}(L)=\left\{0^{i_{1}} 10^{i_{2}} 1 \cdots 10^{i_{r}}: \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{r}} \in L\right\}
$$

If L is a regular language then is it the case that $\operatorname{bin}(L)$ is also a regular language? Give a brief justification for your answer. ($\mathbf{8}$ marks)
7. For the context-free grammar, $G=(V, \Sigma, S, P)$ with $V=\{A, B, C, S\} ; \Sigma=\{a, b, c, d\}$; start symbol S and production rules, P, defined by

$$
\begin{aligned}
& S \rightarrow S B c\|B A C\| C A \\
& A \rightarrow C S\|A B C\| a d \\
& B \rightarrow C a S\|B C\| b \\
& C \rightarrow A B\|S C A S\| c
\end{aligned}
$$

a. Identify, giving reasons for each case, all of the production rules of G that do not meet the conditions of Chomsky Normal Form, (6 marks)
b. Carefully show how G may be modified to give a context-free grammar $G^{\prime}=\left(V^{\prime}, \Sigma, S, P^{\prime}\right)$ such that G^{\prime} generates exactly the same language as G and for which every production rule in P^{\prime} is in Chomsky Normal Form. ($\mathbf{6}$ marks)
c. Consider the language, $L_{C A N-H A L T}^{k}$ of Turing Machine properties given by

$$
L_{C A N-H A L T}^{k}=\left\{\langle M, k\rangle: M \text { halts on at least one word in }\{0,1\}^{k}\right\}
$$

Show that $L_{C A N-H A L T}$ is recursively enumerable (r.e.). ($\mathbf{8}$ marks)

