Problem Solving by Computer II (2cs22),
University of Liverpool, Summer Examination, June’99

instruction to candidates
(time allowed 2 hours)

e candidates will be assessed on their best four answers

e if you attempt to answer to more than the required number of questions,
the marks awarded for the excess questions will be discarded (starting
with your lowest mark)

page 1

Problem Solving by Computer II (2cs22),
University of Liverpool, Summer Examination, June’99

Question 1

Given the following recursive function:

function A (n,k:in NATURAL)
return POSITIV E is
begin
ifn=0o0rk=0
then return n + k;
else return A(n—1,k—1)+ 1;
end if;
end A;

1.A Answer the following questions:

(i) List all recursive calls and values returned within each call when function

A is initially called with n =7 and k = 4. [3 marks]
(ii) What arithmetic function is computed by function A? [3 marks]
(iii) What is the exact time complexity (number of recursive calls) of function
A, for arbitrary values of parameters n and k? [3 marks]
(iv) What happens when the line: then return n + k;

is substituted by the line: then return 0; [3 marks]
(v) What happens when the line: else return A(n — 1,k — 1) + 1;

is substituted by the line: else return A(n,k — 1) + 1; [3 marks]

1.B Write two recursive functions in Ada computing value 2" (for n > 1)
and having time complexities:

(i) ©(2") and [3 marks]
(ii) O(n) [2 marks]

page 2

Problem Solving by Computer II (2c¢s22),
University of Liverpool, Summer Examination, June’99

Question 2
2.A Study the following PStack package. As you can see there are places
numbered 1..5, where the missing code is labelled missing code.
package PStack is
1 — missing code -
procedure push(s: in out STACK; r: in FLOAT);
procedure pop(s: in out STACK; r: out FLOAT);
2 — missing code —
private
type STACK _EL;
3 — missing code -—
end PStack;
package body PStack is
type STACK _FEL is
record
4 — missing code —
next : STACK;
end record;
procedure push(s: in out STACK; r: in FLOAT) is
begin
s:=new STACK EL(s,r);
end push;
procedure pop(s: in out STACK; r: out FLOAT) is
begin
ri= s.num;
s := s.next;
end pop;
5 — missing code -—
begin
return s = null;
end empty;
end PStack;

page 3

Problem Solving by Computer II (2cs22),
University of Liverpool, Summer Examination, June’99

The missing lines are given below and are labelled with letters A to E. Work
out where the missing code should go and then give the answer listing all
matching pairs of the form (missing line number, appropriate letter).

function empty(s : STACK) return BOOLEAN is

type STACK is access STACK_EL;

num : FLOAT;

type STACK is limited private;

function empty(s : STACK) return BOOLEAN;, [5 marks]

BOoQ®»>

2.B Briefly outline three advantages of using packages. [3 marks]

2.C Explain the function of package specification and package bodies, using
as an example the PStack package. [4 marks]

2.D List two advantages and two disadvantages of using pointers. [4 marks]

2.E Decide whether stack as a data structure is more appropriate for recursive
or iterative methods. [4 marks]

page 4

Problem Solving by Computer II (2cs22),
University of Liverpool, Summer Examination, June’99

Question 3

Consider the following arithmetic expression involving only positive numbers
from the range 1..8 which is given in postfix notation:

157 + 62 x 8 — * +

3.A Write a piece of code in Ada evaluating postfix expressions using a stack
structure. Assume that you have given functions:

pop(F) — removes the top of the stack to variable E, pop(E) used on empty
stack generates FRROR message,

push(E) — places the content of variable E on the top of the stack,

empty — returns true when stack is empty, false otherwise,

get(C') — reads the next input character to variable C,

num(C') — changes character in C' to the corresponding number.

Make sure that your program reports also invalid expressions. [10 marks]

3.B Calculate the value of the expression. [2 marks]

3.C Create an evaluation tree for the expression and explain which traversing
order corresponds to the postfix notation. [3 marks]

3.D Create a bracket expression representing the structure of the evaluation
tree from 3.C. [3 marks]

3.E List nodes of the evaluation tree (3.C) in prefix order. [2 marks]

page 5

Problem Solving by Computer II (2cs22),
University of Liverpool, Summer Examination, June’99

Question 4
4.A List three applications of heaps. [3 marks]

4.B Let T'(1..11) = (1,4,2,5,8,9,3,7,6, 11, 10).

(i) Do elements of T" form a structure of a heap? To answer this question
draw a binary tree formed by elements of T" and check whether each internal
node satisfies the heap property. [5 marks]
(ii) What is the time complexity of the heap construction? [1 mark]
(iii) What is the time complexity of the HeapSort algorithm? [1 mark]

4.C Which function is larger for almost all n (i.e. which function has higher
order):

(1)

3 n
n4
log(n)
(i)
log(n!) 2n
(iii)
nlog log(n) 24 log(n)
[6 marks]
4.D What is the value of:
log*(15) =
[2 marks]

4.E Which exact complexity is better for realistic values of parameter n,

nlog(n)
2

100n or ?

Justify shortly all your answers. [2 marks]

page 6

Problem Solving by Computer II (2cs22),
University of Liverpool, Summer Examination, June’99

Question 5

Given onedimensional table T': TABLE, where:
type TABLE is array (1..N) of FLOAT;

and T is filled with possibly both positive and negative real numbers.

5.A Design and write an Ada procedure finding a segment (slice) 7'(i..j) in
table T' (for 1 < i < j < n), s.t. Z?{;:z T'(k) is maximised. Ada procedure
should report both left and right end of the requested segment as well as the
sum of its elements. [10 marks]

5.B Give a proof of correctness of your procedure from 5.A [5 marks]

5.C What is the time complexity of your procedure from 5.A? Give some
justification. [5 marks]

page 7

Problem Solving by Computer II (2cs22),
University of Liverpool, Summer Examination, June’99

Question 6

Given

type TABLE is array (1..N) of FLOAT;

type LONG_TABLE is array (1..2N) of FLOAT;
T\, Ty : TABLE:

T5 : LONG_ TABLE;

Elements in tables 77 and T, are sorted in strictly increasing order (i.e.
Ti(i) < Ty(j), forany 1 <i < j < N and k = 1,2).

6.A Create an Ada procedure which fills table 75 with elements from 77 and
T5 in nondecreasing order. Please comment on complexity of your solution.
[5 marks]

6.B What is the time complexity of the merging problem from 6.A when one
of the input tables (7} or 73) is not sorted. Can we achieve time complexity
O(N)? If your answer is negative, please comment on why you think it is not
possible. [5 marks]

6.C Compare time complexities of two sorting procedures SelectionSort and
MergeSort when the unit operation is defined as:

(i) one comparison of two numbers [2 marks]
(ii) one swap of two numbers [2 marks]

6.D Which sorting procedure was used to sort 5 numbers from range 1..5,
where sequence below starts with the original order of numbers and then
continues with orders after consecutive stages of the sorting procedure:

32514— > 12534— > 12534— > 12354— > 123457
Briefly justify your answer. [2 marks]

6.E What is the time complexity of the CountSort algorithm? Why and
when does it beat other more general sorting algorithms? [4 marks]

page 8

Problem Solving by Computer II (2cs22),
University of Liverpool, Summer Examination, June’99

Answers to question 1

1.A

(i) The calls and values are as follows:

A(1,4) =T =A6,3)+1=6+1=7
A(6,3) = = A(5,2) +1=5+1=6
A(5,2) =5 =A4,1)+1=44+1=5
A(4,1) = 4 = A(3,0)+1=3+1=4
A(3,0) =3

(ii) Function A computes the maximum.
(iii) There are min(n, k) + 1 calls of procedure A including first call A(n, k)
and last call when one of the parameters becomes 0.
(iv) In this case function will compute the minimum.
(v) In this case function will compute the sum.
1.B
(i) Function with exponential complexity:
function ezp(n : in NATURAL)
return NATURAL is
begin
ifn=20
then return 1;
else return exp(n — 1) + exp(n — 1);
end if;
end ezp;
(ii) Function with linear complexity:
function lin(n : in NATURAL)
return NATURAL is
begin ifn=20
then return 1;
else return 2 x lin(n — 1);
end if;
end [in;

page 9

Problem Solving by Computer II (2c¢s22),
University of Liverpool, Summer Examination, June’99

Answers to question 2

2.A The matching pairs are as follows:

(1, D), (2, E), (3, B), (4,0), (5, A)

2.B Three advantages of using packages:

1. Bringing together related parts of a program into a logical unit.

2. A package has its own environment containing local types as well as reali-
sation of functions and procedures, which are separated from the rest of the
program.

3. A package is selfcontained so it can be developed and compiled alone.
2.C Each package consists in two separate parts: specification (which is vis-
ible) and realisation (which is hidden). The visible part is accessible (from
outside) and it contain declaration of types, constants, subroutines, tasks and
other packages. The second part, the body of the package, is hidden, and
it contains a realisation of types and subroutines defined in the specification
part. Since this part is hidden the user of the package can not access the
local data declared in the realisation part.

The package defined in 2.A is an implementation of a stack. In its specifica-
tion part one can find declaration of 3 standard stack functions: pop, push,
and empty which will be available for a package user. Moreover specification
part contains definition of stack types. But the user of the package does not
know what a stack really looks like. The only thing a user may do is declare
declare objects of type STACK and have parameters of type STACK in
calls to subprograms.

2.D Two advantages: (i) dealing with data structures which size is not known
in advance and (ii) dealing with data structures with more complex topology.
Two disadvantages: (i) implementing data structures in arrays is more time
efficient and (ii) garbage collection is more complex.

2.E A stack is a data structure which is used in the realisation of a recursive
methods. A use of the stack can be hidden, when a programmer writes a
recursive procedure and the stack of recursive calls is handled by the pro-
gramming language. Or use of the stack can be visible when a programmer
implements recursive procedure in the language not allowing recursive calls.

page 10

Problem Solving by Computer II (2cs22),
University of Liverpool, Summer Examination, June’99

Answers to question 3

3.A The fragment of Ada code :
x:CHARACTER;a,b: INTEGER, ...
while get(z) loop
case r is
when '1"../8 => push(num(z));
when s’ => pop(a); pop(b); a := a * b; push(a);
when '+ => pop(a); pop(b); a := a + b; push(a);
when '—" => pop(a); pop(b); a :== a — b; push(a);
end case;
end loop;
pop(a); if empty then return a; else ERROR; end if;

3.B 49

3.C Postfix notation represents postorder traversing of the evaluation tree.
+ 49

\, .
/i
+12 *4
/N
1 5 7 6 2

8

3.D (O(OO)COOON)

3.E +1 % 457 — %628

page 11

Problem Solving by Computer II (2cs22),
University of Liverpool, Summer Examination, June’99

Answers to question 4
4.A 1. Selection, 2. Sorting, 3. Compression (Huffman coding)

4.B (i) Yes, this is a heap, all children are greater then their parents.
4'///////1\\\\\\ 2
N
5 8 o \3
VANEVAN

7 6 11 10

(ii) linear O(n), (iii) O(nlog(n))

4.C

(i) ni < oa(m] ~ Pecause ni > log(n),

(ii) log(n!) > 2n — because log(n!) = Q(nlog(n)),

(iii)nloslosm) > 24108(n) _ hecause 24196 = n* and n'°81%6(grows faster than

any polynomial
4.D log*(15) =3

4.E 100n > "IOTg(n) for all realistic values of n, since inequality holds for all
n < 229 which is much larger then the number of atoms in the solar system.

page 12

Problem Solving by Computer II (2c¢s22),
University of Liverpool, Summer Examination, June’99

Answers to question 5

5.A The problem can be solved in linear time but also quadratic time solution
will be granted 10 marks. The cubic time solution will get at most 5 marks.
The quadratic solution is presented below.

1,7, mazxi,maxj : INTEGER;
sum, mazsum : FLOAT
mazxsum := T(1); mazxi := 1;mazj := 1;
for : in 1..N loop
sum := 0.0;
for 7 in ¢..N loop
sum = sum + T(5);
if sum > maxsum
then mazxsum := sum;mazt := i; maxj := j;
end if;
end loop;
end loop;

Where the heaviest segment is T'(mazi, maxj) and its weight is mazsum.
5.B Let index 7 (external loop) stands for the left end of the slice in array T
and index j (internal loop) for its right end. Then each execution of the body
of an internal loop corresponds to a visit at slice T'(i..7), forall1 <i < j < N.
The sum for the slice of the form 7'(¢,¢) (i=1..N) is computed during the first
iteration of the internal loop, when ¢+ = j. The sum for any other segment
T(i..j) (where i < j) is computed as the sum of elements in 7'(i..j — 1)
(found during last iteration of an internal loop) and value T'(j) (added at
the current iteration). The value mazsum is initially set to the value 7'(1)
but it is updated whenever current value of sum (sum of elements in current
T(i..7)) is becoming larger the maxzsum.

5.C Time complexity of the solution is: O(N?) since we have only two nested
loops with ranges not greater than N; and it is Q(N?) since for 1 = 1..N/2
number of iterations of internal loop is at least N/2. Then the time complex-
ity is ©(N?).

page 13

Problem Solving by Computer II (2cs22),
University of Liverpool, Summer Examination, June’99

Answers to question 6

6.A
1,7,k : INTEGER,;
1:=1;7 :=1;

while : < N and 7 < N loop
if T1(3) < Th(j)
then T3(: + 75— 1) :=T1(i); i ;=i + 1;
else T3(i+j—1):=Ts(j); j =7+ 1;
end if;
end loop;
ifi >N
then for k in j..N loop T3(N + k) := Ty(k); end loop;
else for k in i..N loop T3(N + k) := T1(k); end loop;
end if;

Time complexity of the algorithm is linear in N since the number of elements
that have been copied to table T3(1..2N) is exactly 2/V.

6.B In case one of the tables is not sorted the complexity of the problem
becomes O(N log(NN)). We have to sort elements in unsorted table (otherwise
elements in 73 would be unsorted) which requires time Q(N log(N)). And
any sorting algorithm gives solution O(N log(N)).

6.C (i) in the comparison model SelectionSort is always quadratic and
MergeSort has always complexity O(nlog(n)); (ii) in the model with swaps
SelectionSort is faster since it always swaps at most n times and MergeSort
always require O(n logn) swaps

6.D This is SelectionSort, it finds the smallest element and swaps it with
the first one, then second smallest and swaps it with the second one, etc

6.E When we are dealing with (not too big) integers CountSort can sort
them in linear time. CountSort is not based on comparisons between sorted
numbers so the 2(nlog(n)) lower bound does not hold in this case.

page 14

