MATH545001

(C) UNIVERSITY OF LEEDS

Examination for the Module MATH5450
(June 2006)

Polymeric Fluids

Time allowed: $\mathbf{3}$ hours

Answer FIVE of the SEVEN questions.
All questions carry equal marks.

1. (a) In the power-law fluid model the shear viscosity is equal to $\mu(\dot{\gamma})=K|\dot{\gamma}|^{n-1}$, where K and n are positive constants. Explain what is meant by the terms shear thinning and shear thickening and state the range of values of n for which the power law fluid is shear-thinning or shear-thickening.
(b) A cylindrical rod of radius a moves at velocity U along the axis of a cylinder of radius b. The gap between the rod and the cylinder is filled with a power-law fluid. Write down the equation of axial momentum conservation on the assumption that inertia can be neglected and the extra stress, σ, is a function of r only, and deduce that if the pressure gradient is zero along the pipe then

$$
\frac{1}{r} \frac{d}{d r}\left(r \sigma_{r z}\right)=0
$$

Show that the fluid velocity in the gap between the rod and cylinder is given by

$$
u=U \frac{r^{\frac{n-1}{n}}-b^{\frac{n-1}{n}}}{a^{\frac{n-1}{n}}-b^{\frac{n-1}{n}}} \quad \text { for } n \neq 1
$$

What is the fluid velocity for $n=1$?
Show that the drag force per unit length acting on rod is equal to

$$
F=2 \pi a \sigma_{r z}(a)
$$

and find its value when $n=0.5$.
2. (a) Using the appropriate formulae for cylindrical polar coordinates write down the velocity gradient for a flow in which the fluid velocity is given in cylindrical polar coordinates (r, θ, z) by $\mathbf{u}=(0, v(r), 0)$. Show that the $r \theta$ component of the strain-rate tensor, \mathbf{E},

$$
E_{r \theta}=\frac{1}{2} \dot{\gamma}=\frac{r}{2} \frac{d}{d r}\left(\frac{v}{r}\right)
$$

where $\dot{\gamma}$ is the local shear-rate. Define the shear viscosity, $\mu(\dot{\gamma})$, and first and second normal stress differences, $N_{1}(\dot{\gamma})$ and $N_{2}(\dot{\gamma})$, in terms of the components of the extra stress tensor σ.
(b) Write down the components of the momentum equation for such a flow on the assumption that fluid inertia is negligible and the gravitational acceleration, $\mathbf{g}=(0,0,-g)$. (You may assume that $\sigma_{r z}=\sigma_{\theta z}=0$). Show that this leads to the following equations

$$
\begin{aligned}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \mu(\dot{\gamma}) \dot{\gamma}\right) & =0, \\
\frac{\partial}{\partial r}\left(-p+\sigma_{z z}+N_{2}\right) & =\frac{N_{1}}{r} \\
\frac{\partial}{\partial z}\left(-p+\sigma_{z z}\right) & =\rho g .
\end{aligned}
$$

(c) A vertical rod of radius a rotates at angular velocity $\Omega>0$ in a shear-thinning polymeric fluid in which

$$
\mu(\dot{\gamma})=K|\dot{\gamma}|^{-1 / 3}, \quad N_{1}(\dot{\gamma})=A \dot{\gamma}^{2}, \quad N_{2}(\dot{\gamma})=0
$$

where K and A are both positive constants. Show that the fluid velocity $v(r)$ is given by

$$
v(r)=\Omega \frac{a^{3}}{r^{2}}
$$

and hence find $\dot{\gamma}$.
If the top surface is open to the atmosphere, show that the position of this surface is given by

$$
h(r)=h_{\infty}+\frac{3 A \Omega^{2} a^{6}}{8 \rho g r^{6}}
$$

where h_{∞} is the height for $r \rightarrow \infty$.
3. (a) Write down an expression for the stress in a linear viscoelastic fluid of relaxation modulus $G(t)$. By considering the stress generated by a shear-rate,

$$
\dot{\gamma}=\frac{d}{d t}(\epsilon \exp (i \omega t))
$$

define the complex modulus G^{*} and explain the significance of the real and imaginary parts of G^{*}.
(b) The shear stress, $\sigma(t)$ in a linear Maxwell fluid is related to the shear-rate $\dot{\gamma}$ by

$$
\tau \frac{d \sigma}{d t}+\sigma=\mu \dot{\gamma}
$$

Show that this is a linear viscoelastic fluid and find its relaxation modulus, $G(t)$. Find the complex modulus of this fluid and show that the loss and storage moduli are given respectively by

$$
G^{\prime}=\frac{\mu \omega^{2} \tau}{1+\omega^{2} \tau^{2}}, \quad G^{\prime \prime}=\frac{\mu \omega}{1+\omega^{2} \tau^{2}}
$$

Find the frequency ω at which $G^{\prime}=G^{\prime \prime}$.
(c) A fluid satisfying the linear Maxwell model is subjected to the following shear flow

$$
\dot{\gamma}= \begin{cases} & \text { for } t<0 \\ a \sin \omega t & \text { for } t \geq 0\end{cases}
$$

Find the shear stress for $t>0$.
4. The expression for the total stress in a rubber is

$$
\boldsymbol{\tau}=G \mathbf{F} \cdot \mathbf{F}^{T}-\beta \mathbf{I}
$$

where \mathbf{F} is the deformation gradient tensor, G is the shear modulus and β is an isotropic contribution to the pressure.
(a) What is the deformation gradient \mathbf{F} and stress $\boldsymbol{\tau}$ for a volume-conserving uniaxial extension by a ratio λ in the x-direction? A piece of rubber, of initial cross sectional area A_{0}, is stretched by a ratio λ. If the sides of the rubber are exposed to the atmosphere, so that $\tau_{y y}=\tau_{z z}=-p_{a t m}$, show that the force required to achieve the stretch is

$$
f=G A_{0}\left(\lambda-\frac{1}{\lambda^{2}}\right)
$$

(b) Two light, thin pieces of rubber, of initial length L_{0} and initial cross sectional area A_{0} are attached by one end to a mass m and stretched to λ_{0} times their initial length between clamps a distance $2 \lambda_{0} L_{0}$ apart, as shown in the above diagram. Assume the only force on the mass is due to the rubber.
(i) Show that, for small displacements $x \ll \lambda_{0} L$ parallel to the rubber direction, the force on the mass in this direction is

$$
F_{x}=-2 \frac{G A_{0}}{L_{0}}\left(1+\frac{2}{\lambda_{0}^{3}}\right) x .
$$

(ii) Show that, for small displacements $y \ll \lambda_{0} L$ perpendicular to the rubber direction, the force on the mass in this direction is

$$
F_{y}=-2 \frac{G A_{0}}{L_{0}}\left(1-\frac{1}{\lambda_{0}^{3}}\right) y
$$

(iii) Hence, using Newton's second law $\mathbf{F}=m \mathbf{a}$ for the mass, obtain the ratio ω_{x} / ω_{y} of frequencies of small amplitude oscillation of the mass in the x and y directions, as a function of λ_{0}. What is special about ω_{x} / ω_{y} when $\lambda_{0}^{3}=2$ and $\lambda_{0}^{3}=\frac{11}{8}$?
5. The Langevin equation with intertia for the velocity v of a particle of mass m moving with friction constant ζ is

$$
m \frac{d v}{d t}+\zeta v=f(t)
$$

where $\left\langle f(t) f\left(t^{\prime}\right)\right\rangle=2 k_{\mathrm{B}} T \zeta \delta\left(t-t^{\prime}\right) . k_{\mathrm{B}}$ is the Boltzmann constant and T is the temperature.
(a) By use of a suitable integrating factor, or otherwise, show that a solution of this equation is

$$
v(t)=\frac{1}{m} \int_{-\infty}^{t} d s f(s) \exp \left(\frac{s-t}{\tau}\right)
$$

and hence that

$$
\left\langle v(t) v\left(t^{\prime}\right)\right\rangle=\frac{1}{m^{2}} \int_{-\infty}^{t} d s \int_{-\infty}^{t^{\prime}} d s^{\prime}\left\langle f(s) f\left(s^{\prime}\right)\right\rangle \exp \left(\frac{s+s^{\prime}-t-t^{\prime}}{\tau}\right)
$$

where $\tau=\frac{m}{\zeta}$.
(b) Hence show that, for $t \leq t^{\prime}$,

$$
\left\langle v(t) v\left(t^{\prime}\right)\right\rangle=\frac{k_{\mathrm{B}} T}{m} \exp \left(-\frac{\left(t^{\prime}-t\right)}{\tau}\right) .
$$

What is the average kinetic energy, $\frac{1}{2} m\left\langle[v(t)]^{2}\right\rangle$?
(c) Given that, in general,

$$
\left\langle v(t) v\left(t^{\prime}\right)\right\rangle=\frac{k_{\mathrm{B}} T}{m} \exp \left(-\frac{\left|t^{\prime}-t\right|}{\tau}\right)
$$

and that the position of the particle is $x(t)=\int_{0}^{t} d s v(s)$ when $x(0)=0$, show that

$$
\left\langle[x(t)]^{2}\right\rangle=\frac{2 k_{\mathrm{B}} T}{\zeta}\left(t+\tau\left(\exp \left(-\frac{t}{\tau}\right)-1\right)\right)
$$

From the limiting behaviour of this as t becomes large, obtain the diffusion constant for the motion.
Hint: $\int_{0}^{t} d s \int_{0}^{t} d s^{\prime} f\left(\left|s-s^{\prime}\right|\right)=2 \int_{0}^{t} d s \int_{0}^{s} d s^{\prime} f\left(s-s^{\prime}\right)$.
6. The Rouse equation for a polymer chain comprising beads with friction constant ζ connected with springs of spring constant k is

$$
\zeta\left(\frac{\partial \mathbf{r}_{s}}{\partial t}-\mathbf{v}\left(\mathbf{r}_{s}\right)\right)=k \frac{\partial^{2} \mathbf{r}_{s}}{\partial s^{2}}+\mathbf{f}_{s}, s=0 . . N
$$

with boundary conditions

$$
\left.\frac{\partial \mathbf{r}_{s}}{\partial s}\right|_{s=0}=0 \text { and }\left.\frac{\partial \mathbf{r}_{s}}{\partial s}\right|_{s=N}=0
$$

(a) In terms of the forces acting on a bead, briefly discuss the origin of the term, $\frac{\partial^{2} \mathbf{r}_{s}}{\partial s^{2}}$.
(b) Ignoring the terms due to velocity, $\mathbf{v}\left(\mathbf{r}_{s}\right)$, and random force, \mathbf{f}_{s}, show that the relaxation time of the p th normal mode, $\mathbf{r}_{s}=\mathbf{X}_{p} \cos \left(\frac{\pi p s}{N}\right)$, is

$$
\tau_{p}=\frac{\tau_{1}}{p^{2}}
$$

where $\tau_{1}=\frac{N^{2} \zeta}{\pi^{2} k}$.
(c) Given that this leads to a time-dependent modulus of form

$$
G(t)=G_{0} \sum_{p=1}^{\infty} \exp \left(-\frac{p^{2} t}{\tau_{1}}\right)
$$

use $G^{*}=G^{\prime}+i G^{\prime \prime}=\int_{0}^{\infty} i \omega G(s) \exp (-i \omega s) d s$ to show that

$$
\begin{aligned}
G^{\prime} & =G_{0} \sum_{p=1}^{\infty} \frac{\omega^{2} \tau_{1}^{2}}{p^{4}+\omega^{2} \tau_{1}^{2}}, \\
G^{\prime \prime} & =G_{0} \sum_{p=1}^{\infty} \frac{p^{2} \omega \tau_{1}}{p^{4}+\omega^{2} \tau_{1}^{2}}
\end{aligned}
$$

and obtain approximations of the form $G^{\prime \prime}=c \omega^{\alpha}$ for $\omega \tau_{1} \ll 1$ and (by approximating the sum as an integral) for $\omega \tau_{1} \gg 1$. Hence sketch a graph of $\log G^{\prime \prime}$ versus $\log \omega$.

You may use the results:

$$
\begin{aligned}
\sum_{1}^{\infty} p^{-2} & =\frac{\pi^{2}}{6} \\
\int_{0}^{\infty} \frac{x^{2}}{1+x^{4}} d x & =\frac{\pi}{2 \sqrt{2}} .
\end{aligned}
$$

7. In the Oldroyd B model the extra stress σ is given by a sum of a Newtonian fluid stress and an Upper Convected Maxwell element:

$$
\boldsymbol{\sigma}=G \mathbf{A}+\mu\left(\mathbf{K}+\mathbf{K}^{T}\right)
$$

where the structure tensor A satisfies

$$
\frac{d \mathbf{A}}{d t}=\mathbf{K} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{K}^{T}-\frac{1}{\tau}(\mathbf{A}-\mathbf{I})
$$

Here \mathbf{K} is the velocity gradient tensor, with components $K_{i j}=\frac{\partial u_{i}}{\partial x_{j}}$ and G and τ are both positive constants. μ is the Newtonian viscosity.
(a) Find the tensor \mathbf{K} and hence write down the equations for evolution of the tensor components, $A_{x x}, A_{x y}$ and $A_{y y}$ when an Oldroyd B fluid is subjected to a transient shear flow of the form $\mathbf{u}=(y f(t), 0,0)$.
By setting $\frac{d \mathbf{A}}{d t}$ to zero, obtain the steady state values of $A_{x x}, A_{x y}$ and $A_{y y}$ when the fluid is subjected to a shear flow at constant rate of $f(t)=g$.
(b) An Oldroyd B fluid is subjected to a constant shear flow $f(t)=g$ for $t<0$, and at $t=0$ has reached steady state. For $t>0$, the shear stess is removed so that $\sigma_{x y}=0$, but the fluid remains constrained to a flow of form $\mathbf{u}=(y f(t), 0,0)$.
Using $\sigma_{x y}=0$, show that, for $t>0$,

$$
f(t)=-\frac{G}{\mu} A_{x y}(t) .
$$

Hence obtain $A_{y y}, A_{x y}$ and $f(t)$ as a function of t for $t>0$. Find the recoil strain

$$
\gamma_{\mathrm{R}}=-\int_{0}^{\infty} f(t) d t
$$

For $t>0$, find $A_{x x}$ and show that the normal stress $N_{1}=\sigma_{x x}-\sigma_{y y}$ is

$$
N_{1}=2 G g^{2} \tau^{2}\left(\frac{G \tau}{2 G \tau+\mu} \exp \left(-2\left[\frac{G}{\mu}+\frac{1}{\tau}\right] t\right)+\frac{G \tau+\mu}{2 G \tau+\mu} \exp \left(-\frac{t}{\tau}\right)\right)
$$

Formula Sheet

Cartesian coordinates

pressure, p, velocity, $\mathbf{u}=u \mathbf{e}_{x}+v \mathbf{e}_{y}+w \mathbf{e}_{z}$, velocity gradient, \mathbf{K} with $K_{i j}=\frac{\partial u_{i}}{\partial x_{j}}$

$$
\begin{array}{rr}
\nabla p=\frac{\partial p}{\partial x} \mathbf{e}_{x}+\frac{\partial p}{\partial y} \mathbf{e}_{y}+\frac{\partial p}{\partial z} \mathbf{e}_{z}, & \nabla \cdot \mathbf{u}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z} \\
\mathbf{K}=\left(\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right) \quad \nabla \cdot \boldsymbol{\sigma}=\left(\begin{array}{l}
\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{y x}}{\partial y}+\frac{\partial \sigma_{z x}}{\partial z} \\
\frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \sigma_{z y}}{\partial z} \\
\frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{y z}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}
\end{array}\right)
\end{array}
$$

Cylindrical Polar Coordinates

velocity, $\mathbf{u}=u \mathbf{e}_{r}+v \mathbf{e}_{\theta}+w \mathbf{e}_{z}$.

$$
\begin{gathered}
\nabla p=\frac{\partial p}{\partial r} \mathbf{e}_{r}+\frac{1}{r} \frac{\partial p}{\partial \theta} \mathbf{e}_{\theta}+\frac{\partial p}{\partial z} \mathbf{e}_{z}, \quad \nabla \cdot \mathbf{u}=\frac{1}{r} \frac{\partial}{\partial r}(r u)+\frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{\partial w}{\partial z}, \\
\mathbf{K}=\left(\begin{array}{ccc}
\frac{\partial u}{\partial r} & \frac{1}{r} \frac{\partial u}{\partial \theta}-\frac{v}{r} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial r} & \frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{u}{r} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial r} & \frac{1}{r} \frac{\partial w}{\partial \theta} & \frac{\partial w}{\partial z}
\end{array}\right) \\
\nabla \cdot \boldsymbol{\sigma}=\left(\begin{array}{c}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \sigma_{r r}\right)+\frac{1}{r} \frac{\partial \sigma_{\theta r}}{\partial \theta}+\frac{\partial \sigma_{z r}}{\partial z}-\frac{\sigma_{\theta \theta}}{r} \\
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \sigma_{r \theta}\right)+\frac{1}{r} \frac{\partial \sigma_{\theta \theta}}{\partial \theta}+\frac{\partial \sigma_{z \theta}}{\partial z}+\frac{\sigma_{\theta r}-\sigma_{r \theta}}{r} \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \sigma_{r z}\right)+\frac{1}{r} \frac{\partial \sigma_{\theta z}}{\partial \theta}+\frac{\partial \sigma_{z z}}{\partial z}
\end{array}\right)
\end{gathered}
$$

Spherical Polar Coordinates

$\mathbf{u}=u \mathbf{e}_{r}+v \mathbf{e}_{\theta}+w \mathbf{e}_{\phi}$

$$
\begin{aligned}
& \nabla p=\frac{\partial p}{\partial r} \mathbf{e}_{r}+\frac{1}{r} \frac{\partial p}{\partial \theta} \mathbf{e}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi} \mathbf{e}_{\phi}, \\
& \nabla \cdot \mathbf{u}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(v \sin \theta)+\frac{1}{r \sin \theta} \frac{\partial w}{\partial \phi}, \\
& \mathbf{K}=\left(\begin{array}{ccc}
\frac{\partial u}{\partial r} & \frac{1}{r} \frac{\partial u}{\partial \theta}-\frac{v}{r} & \frac{1}{r \sin \theta} \frac{\partial u}{\partial \phi}-\frac{w}{r} \\
\frac{\partial v}{\partial r} & \frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{u}{r} & \frac{1}{r \sin \theta} \frac{\partial v}{\partial \phi}-\frac{w}{r} \cot \theta \\
\frac{\partial w}{\partial r} & \frac{1}{r} \frac{\partial w}{\partial \theta} & \frac{1}{r \sin \theta} \frac{\partial w}{\partial \phi}+\frac{u}{r}+\frac{v}{r} \cot \theta
\end{array}\right) \\
& \nabla \cdot \boldsymbol{\sigma}=\left(\begin{array}{c}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \sigma_{r r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sigma_{\theta r} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial \sigma_{\phi r}}{\partial \phi}-\frac{\sigma_{\theta \theta}+\sigma_{\phi \phi}}{r} \\
-\frac{1}{r^{3}} \frac{\partial}{\partial r}\left(r^{3} \sigma_{r \theta}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sigma_{\theta \theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial \sigma_{\phi \theta}}{\partial \phi}+\frac{\sigma_{\theta r}-\sigma_{r \theta}-\sigma_{\phi \phi} \cot \theta}{r} \\
\frac{1}{r^{3}} \frac{\partial}{\partial r}\left(r^{3} \sigma_{r \phi}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sigma_{\theta \phi} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial \sigma_{\phi \phi}}{\partial \phi}+\frac{\sigma_{\phi r}-\sigma_{r \phi}+\sigma_{\phi \theta} \cot \theta}{r}
\end{array}\right)
\end{aligned}
$$

