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Polymeric Fluids

Time allowed:3 hours
Answer FIVE of the SEVEN questions.

All questions carry equal marks.

1. (@) Inthe power-law fluid model the shear viscosity is equaktd) = K|4|", where K
andn are positive constants. Explain what is meant by the tesmaar thinning and
shear thickening and state the range of values offor which the power law fluid is
shear-thinning or shear-thickening.

(b) A cylindrical rod of radiusa moves at velocity/ along the axis of a cylinder of radius
b. The gap between the rod and the cylinder is filled with a paasrfluid. Write
down the equation of axial momentum conservation on thenagan that inertia can
be neglected and the extra stress, is a function ofr only, and deduce that if the
pressure gradient is zero along the pipe then

1d

;% ('I"O'rz) =0.

Show that the fluid velocity in the gap between the rod andhdgr is given by

u="U % forn #1.
an —bw
What is the fluid velocity fom = 1?
Show that the drag force per unit length acting on rod is etyual

F =2mao,.(a),

and find its value whem = 0.5.
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2. (@) Using the appropriate formulae for cylindrical polar caaetes write down the velocity
gradient for a flow in which the fluid velocity is given in cydirical polar coordinates
(r,0,2) by u = (0,v(r),0). Show that the-d component of the strain-rate tensar,

1 rd /v
Boo by oy,
b 27 2dr \r

where+ is the local shear-rate. Define the shear viscosity,), and first and second

normal stress differencesy; (§) and Ny(¥), in terms of the components of the extra
stress tensos .

(b) Write down the components of the momentum equation for sutdweon the assump-
tion that fluid inertia is negligible and the gravitationakaleration,g = (0,0, —g).
(You may assume that.. = 04, = 0). Show that this leads to the following equations

10 N

25 (r*u(%)¥) =0,
9 N
5 (—p+ 0.+ Ny) = —

g(— +0,.)=
82 p zZz _pg

(c) A vertical rod of radiusa rotates at an angular velocit§ > 0 in a shear-thinning
polymeric fluid in which

p(y) = K50 Ni(d) = A, No(§) =0,

where K and A are both positive constants. Show that the fluid velocity) is given
by
3
a
v(r) = Qﬁ
and hence findy.

If the top surface is open to the atmosphere, show that théigosf this surface is
given by

3A%aS

h = hoo o .. 6

whereh, is the height forr — occ.

3. (a) Write down an expression for the stress in a linear visctielfisid of relaxation mod-
ulus G(t). By considering the stress generated by a shear-rate,

. d .
7= o (eexp(iwt)),

define the complex modulus* and explain the significance of the real and imaginary
parts of G*.
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(b) The shear stress,(¢) in a linear Maxwell fluid is related to the shear-ratdy

do n .
T— +0 = uy.
dt wy

Show that this is a linear viscoelastic fluid and find its ratson modulus((t).

Find the complex modulus of this fluid and show that the loskstorage moduli are
given respectively by

2
BT 1" Hw

G =——— ="
1+ w272’ 1+ w?r?

Find the frequencw at whichG' = G”.
(c) A fluid satisfying the linear Maxwell model is subjected te flollowing shear flow

5 = { fort <0,
asinwt fort > 0.
Find the shear stress for> 0.
The expression for the total stress in a rubber is
T=GF -F' - gL

whereF is the deformation gradient tensar, is the shear modulus and is an isotropic
contribution to the pressure.

(&) What is the deformation gradiett and stress for a volume-conserving uniaxial ex-
tension by a ratio\ in the z-direction? A piece of rubber, of initial cross sectionaar
Ag, is stretched by a ratia. If the sides of the rubber are exposed to the atmosphere,
so thatr,, = 7.. = —paum, Show that the force required to achieve the stretch is

f:GA()()\—%).
YA
o il'g =1 o
AL 4L

(b) Two light, thin pieces of rubber, of initial length, and initial cross sectional ared,
are attached by one end to a masasand stretched to\, times their initial length
between clamps a distan@e L, apart, as shown in the above diagram. Assume the
only force on the mass is due to the rubber.

(i) Show that, for small displacements< AL parallel to the rubber direction, the
force on the mass in this direction is

GA 2
=222 142 ) e
Lo ( +>\3)x
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(if) Show that, for small displacemenjs« Ao L perpendicular to the rubber direction,
the force on the mass in this direction is

(iii) Hence, using Newton’s second ldsv=ma for the mass, obtain the ratio, /w,
of frequencies of small amplitude oscillation of the mashew andy directions,
as a function of\,. What is special about, /w, when A} = 2 and A} = £ ?

5. The Langevin equation with intertia for the velocityof a particle of massn moving with
friction constant( is
dv
—_— = t

where(f (t) f (t')) = 2kgT'¢d (t — t'). kg is the Boltzmann constant arid is the tempera-
ture.

(a) By use of a suitable integrating factor, or otherwise, shmat & solution of this equation
is
1 t s—t
t) = — d
= [ sf<s>exp( - ) ,

s+s —t—t
7_ b)

and hence that

ey =25 [ as [ as s 1@ en

wherer = %

(b) Hence show that, for < ¢/,

i) () = "2 exp (—“’ - t)) |

T

What is the average kinetic enerdyn ([v (¢)]*) ?
(c) Given that, in general,

() (E)) = 2L exp <_|t’ - t|)

T

and that the position of the particleis(t) = fot dsv(s) whenz (0) = 0, show that

(e @) = %CBT (t 47 <eXp (-%) _ 1)) |

From the limiting behaviour of this as becomes large, obtain the diffusion constant
for the motion.

Hint: [ ds [, ds'f (|s—s'|) =2 [, ds [ ds'f (s — ).
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6. The Rouse equation for a polymer chain comprising beadsfrigtion constant, connected
with springs of spring constaiit is

Or, 9%r,
C(at _V<rs>) ~ sz T

with boundary conditions

or,

or
— d 5
s 0an

I 0s

=0.

s=N

(a) Interms of the forces acting on a bead, briefly discuss ttggroof the term,%?; :

(b) Ignoring the terms due to velocity, (r,), and random forcef, show that the relaxation
time of thepth normal moder, = X, cos (%5°) , is

T1
T, = —,
p pg
wherer; = %f
(c) Given that this leads to a time-dependent modulus of form

useG* = G' +iG" = [;7iwG (s) exp (—iws) ds to show that
w?r?
G = >
Go Z p + w2r?

WwT-
G// _ 0 p 1
p + w? 7'

and obtain approximations of the for@{’ = cw® for wr; < 1 and (by approximating
the sum as an integral) farr; > 1. Hence sketch a graph &fg G versuslog w .

You may use the results:
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7. Inthe Oldroyd B model the extra stressis given by a sum of a Newtonian fluid stress and
an Upper Convected Maxwell element:

oc=GA+u(K+K"),

where the structure tensa satisfies

dA 1
— =K-A+A-K'—-=—(A-1).
dt + 7'< )

Here K is the velocity gradient tensor, with compones = % and G and T are both
J
positive constantsu is the Newtonian viscosity.

(a) Find the tensolK and hence write down the equations for evolution of the teasm-
ponents,A,,, A,, and A,, when an Oldroyd B fluid is subjected to a transient shear
flow of the formu = (y£(¢),0,0).

By setting % to zero, obtain the steady state valuesAf,, A,, and A,, when the
fluid is subjected to a shear flow at constant rat¢ @) = ¢.

(b) An Oldroyd B fluid is subjected to a constant shear fléw) = ¢ for ¢ < 0, and at
t = 0 has reached steady state. For 0, the shear stess is removed so thagt = 0,
but the fluid remains constrained to a flow of foum= (y f(¢),0,0).

Using o,, = 0, show that, fort > 0,

F =S4,
1

Hence obtain4,,, A,, and f(t) as a function ot for ¢ > 0. Find the recoil strain

R = —/OOO f(t)dt.

Fort¢ > 0, find A,, and show that the normal stred§ = o,, — 0, IS

Gt G 1 GT+p t
_ 22 _ 2 _Z
Ny =2Gg*T <2GT+M6XP< 2{M+T}t)+2GT+MeXp< T))
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For mula Sheet

Cartesian coordinates

pressurep, velocity, u = ue, + ve, + we,, velocity gradientK with K;; = Ou;

e
_Op op op _Ou  Ov  Ow
Vp_axex+8yey+8zez’ v u_8x+8y+8z’
ou Ou Ou 00y  00yy 004
— = = + +
Jdr 0Oy 0z Ox dy 0z
| Ov Ov Ov | 9ouy = 0oy, Do,
K_%O_y@ Vo= 8x+8y+0z
8_w 8_w 8_11) 00, n 0oy, n 0o,
Jdr 0Oy 0z Ox dy 0z
Cylindrical Polar Coordinates
velocity, u = ue, + vey + we, .
_Op 10p op 10 10v  Ow
vP_@reerr@@ee_l_@zez’ v u_rﬁr(ru)+r89+az’
ou 1ou v o
or rofd r 0z
K| 100 u o
or rdfd r 0z
ow 10w 0w
or r 00 0z
10 1 adgr 80” (X1}
R R e R Fa
1 8 1 80’99 80’29 Ogr — Orp
Vo= |29 (2 <
7 r2 (7“ Ure) * r 00 0z r
12 (’f’ ) + 18062 aO-zz
ror rz r 060 0z
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Spherical Polar Coordinates

u = ue, + veg + wey

8p 1 8p 1 0Op
Vp=—e, — ey,
P= % i ro0° +rsm€8¢ ¢
10 1 0 1 ow
Vou=—— (1 0) + —
4T 2 (r u)_l_rsmeae(vsm )+ rsinf 0¢’
Oou 10u v 1 Ou w
or rof r rsinf d¢ r
ov 10v u 1 ov w
K=| = -—&—=+- — — —cot#
or r89+7’ rsinf ¢ r
ow 10w 1 ow + U —l— ‘0
—— —— — —co
or r 00 rsinf 0¢
19 (.2 1 9 inb 1 00¢r _ 9901040
r2 Or (T 0-7"7") + rsind 00 (0-97" Sin ) + rsinf O¢ r
V.o= _TLB% (o) + rsilnﬁ% (090 5in 0) + rsilneagge i 0'97“_0'7“9;0'¢¢C0t9
T%% (T30-7"¢) + rsiln9 % (U€¢ sin 9) r511n9 agj;(b + O—‘W—UT‘Z’:_O—‘W bt

END



