MATH5450M01

(c) UNIVERSITY OF LEEDS

Examination for the Module MATH5450M
(June 2005)

Polymeric Fluids

Time allowed: $\mathbf{3}$ hours

Answer FIVE of the SEVEN questions.
All questions carry equal marks.

1. In the power-law fluid model the shear viscosity is equal to $\mu(\dot{\gamma})=K|\dot{\gamma}|^{n-1}$, where $\dot{\gamma}$ is the shear-rate and K and n are positive constants.
(a) Explain what is meant by the terms shear thinning and shear thickening and state the range of values of n for which the power law fluid is shear-thinning or shear-thickening.
(b) A plane inclined at an angle α to the horizontal is coated with a layer of power-law fluid of thickness h.

Defining Cartesian coordinates with x directed down the slope and y perpendicular to the slope and assuming from symmetry that the fluid velocity is of the form $\mathbf{u}=$ $(u(y), 0)$, show that the x and y components of the momentum equation reduce to

$$
\begin{aligned}
& \frac{\partial p}{\partial x}=\frac{\partial \sigma_{y x}}{\partial y}+\rho g \sin \alpha \\
& \frac{\partial p}{\partial y}=-\rho g \cos \alpha
\end{aligned}
$$

where ρ is the fluid density and g is the gravitational acceleration. State the boundary conditions that apply on the free surface $y=h$. Hence find the pressure, p, and show that the shear stress $\sigma_{y x}$ is given by

$$
\sigma_{y x}=\rho g(h-y) \sin \alpha .
$$

Find the form of the fluid velocity $u(y)$ and show that the velocity at the free surface is proportional to $h^{\frac{n+1}{n}}$.
(c) The fluid in part (b) is replaced with a plastic material with yield stress, σ_{y}. Find the position of the yield surface and the angle α for which the material just flow down the slope. What is the maximum thickness, h, for which the coating will remain fixed for all angles α ?
2. A polymeric fluid is contained between two parallel circular disks of radius a that are a distance h apart. The fluid is open to the atmosphere at $r=a$. The upper disk is rotated at angular velocity Ω while the lower disk remains fixed, so that in cylindrical polar coordinates the fluid velocity between the plates is given by

$$
\mathbf{u}=\frac{\Omega r z}{h} \hat{\boldsymbol{\theta}}
$$

where $\hat{\boldsymbol{\theta}}$ is the unit vector in the angular direction.
(a) Calculate the strain-rate tensor, \mathbf{E} for this flow and show that it corresponds to a shear flow with a shear-rate $\dot{\gamma}=\frac{r \Omega}{h}$.
Identify the flow, gradient and vorticity directions and hence define the normal stress differences N_{1} and N_{2} in terms of the components of the stress tensor $\boldsymbol{\tau}$.
Show that a normal force equal to

$$
F=2 \pi \int_{0}^{a}\left(\tau_{r r}+N_{2}+p_{\mathrm{atm}}\right) r d r
$$

is required to maintain the separation of the plates, where $p_{\text {atm }}$ is atmospheric pressure, and show from the radial momentum equation that

$$
\frac{\partial \tau_{r r}}{\partial r}=\frac{N_{1}+N_{2}}{r} .
$$

(b) For the case $N_{1}(\dot{\gamma})=A_{1} \dot{\gamma}$ and $N_{2}(\dot{\gamma})=A_{2} \dot{\gamma}$ where A_{1} and A_{2} are constants, show that

$$
\tau_{r r}=-p_{\mathrm{atm}}+\frac{\left(A_{1}+A_{2}\right) \Omega}{h}(r-a) .
$$

Hence find the force, F.
3. (a) The extra stress $\boldsymbol{\sigma}$ in the linear Maxwell model is related to the strain-rate, $\mathbf{E}(t)$ by

$$
\tau \frac{\partial \boldsymbol{\sigma}}{\partial t}+\boldsymbol{\sigma}=2 \mu \mathbf{E}(t)
$$

where τ and μ are constants.
Show that this may be written in the form

$$
\begin{equation*}
\boldsymbol{\sigma}=2 \int_{-\infty}^{t} G\left(t-t^{\prime}\right) \mathbf{E}\left(t^{\prime}\right) d t^{\prime} \tag{1}
\end{equation*}
$$

for some suitable choice for the relaxation modulus $G(t)$. Sketch a graph of $G(t)$ and explain the significance of the parameter τ.
Show, using equation (1), that the steady shear viscosity is equal to μ.
(b) Find the form of shear stress $\sigma_{x y}(t)$ generated by the fluid velocity $\mathbf{u}=(y \dot{\gamma}(t), 0,0)$, where

$$
\dot{\gamma}= \begin{cases}\dot{\gamma}_{0} & t<0 \\ -\frac{1}{2} \dot{\gamma}_{0} & 0 \leq t \leq T \\ 0 & t>T\end{cases}
$$

and $\dot{\gamma}_{0}$ is a positive constant for (i) $t<0$, (ii) $0 \leq t \leq T$ and (iii) $t>T$. Show that if T is chosen to be equal to a particular value, $T_{\text {crit }}$, then $\sigma_{x y}=0$ for $t>T$. Sketch graphs of $\sigma_{x y}$ as a function of time for $T<T_{\text {crit }}, T=T_{\text {crit }}$ and $T>T_{\text {crit }}$.
4. The expression for the total stress in a rubber is

$$
\boldsymbol{\tau}=G \mathbf{F} \cdot \mathbf{F}^{T}-\beta \mathbf{I} .
$$

where \mathbf{F} is the deformation gradient tensor, G is the shear modulus and β is an isotropic contribution to the pressure.
(a) What is the deformation gradient \mathbf{F} and stress $\boldsymbol{\tau}$ for a volume-conserving uniaxial extension by a ratio λ in the x-direction? A piece of rubber, of initial cross sectional area A_{0}, is stretched by a ratio λ. If the sides of the rubber are exposed to the atmosphere, so that $\tau_{y y}=\tau_{z z}=-p_{a t m}$, show that the force required to achieve the stretch is

$$
f=G A_{0}\left(\lambda-\frac{1}{\lambda^{2}}\right)
$$

(b) Two light, thin pieces of rubber, of initial length L_{0} and initial cross sectional area A_{0} are attached by one end to a mass m and stretched to twice their initial length between clamps a distance $4 L_{0}$ apart, as shown in the above diagram. Assume the only force on the mass is due to the rubber.
(i) For horizontal displacements x from the equilibrium position of the mass, obtain the total force on the mass due to the rubber in terms of x, L_{0}, G and A_{0}.
(ii) Show that, for small values of x / L_{0}, the force on the mass is

$$
F=-\frac{5 G A_{0}}{2} \frac{x}{L_{0}}
$$

(iii) The mass is initially held at the equilibrium position, then fired horizontally with initial velocity V to the right. Given that a thin piece rubber becomes "slack" for $\lambda<1$, show that this will occur provided

$$
V^{2}>\frac{8 G A_{0} L_{0}}{3 m}
$$

Hint: recall that the acceleration, $\frac{d v}{d t}=v \frac{d v}{d x}$.
5. A set of particles are allowed to move in the (x, y) plane, are subjected to a quadratic potential $U=\frac{1}{2}\left(k_{x} x^{2}+k_{y} y^{2}\right)$, and placed in a shear flow with shear gradient in the y-direction (and flow in the x-direction) so that the equations of motion of each particle are

$$
\begin{aligned}
\zeta\left(\frac{d x}{d t}-\dot{\gamma} y\right) & =-k_{x} x+f_{x}(t) \\
\zeta \frac{d y}{d t} & =-k_{y} y+f_{y}(t)
\end{aligned}
$$

where $\left\langle x(t) f_{x}(t)\right\rangle=\left\langle y(t) f_{y}(t)\right\rangle=k_{\mathrm{B}} T$ and $\left\langle x(t) f_{y}(t)\right\rangle=\left\langle y(t) f_{x}(t)\right\rangle=0 . k_{\mathrm{B}}$ is Boltzmann's constant and T is the temperature.
(a) If $k_{x}=k_{y}=k$, show that the variables $Q_{y y}(t)=\left\langle y^{2}\right\rangle$ and $Q_{x y}(t)=\langle x y\rangle$ satisfy the equations

$$
\begin{aligned}
\frac{d Q_{y y}}{d t} & =-2 \frac{k}{\zeta} Q_{y y}+2 \frac{k_{\mathrm{B}} T}{\zeta} \\
\frac{d Q_{x y}}{d t} & =\dot{\gamma} Q_{y y}-2 \frac{k}{\zeta} Q_{x y}
\end{aligned}
$$

and obtain a similar equation for $Q_{x x}(t)=\left\langle x^{2}\right\rangle$.
(b) Using the set of equations obtained in part (a), find the steady state values of $Q_{y y}$ and $Q_{x y}$, and show that the steady state value of $Q_{x x}$ is

$$
Q_{x x}=\frac{k_{\mathrm{B}} T}{k}\left(1+\frac{\zeta^{2} \dot{\gamma}^{2}}{2 k^{2}}\right)
$$

(c) The x component of the potential is now switched off, so that $k_{x}=0$ and $k_{y}=k$. Obtain the new dynamical equations for $Q_{x x}, Q_{x y}$ and $Q_{y y}$. Show that these new equations are satisfied by

$$
Q_{y y}=c_{1}, \quad Q_{x y}=c_{2} \quad \text { and } \quad Q_{x x}=2 D_{\text {eff }} t,
$$

obtaining the constants c_{1} and c_{2} and finding the effective diffusion constant $D_{\text {eff }}$.
6. (a) The graph below is a sketch of the relaxation modulus $G(t)$ for an unentangled melt. Sketch similar graphs of the relaxation modulus for (i) an entangled melt, and (ii) a rubber, and briefly explain the differences between the graphs.

(b) The reptation contribution to the relaxation modulus for an entangled melt is

$$
G(t)=\frac{G_{e}}{L} \int_{0}^{L} p(s, t) d s
$$

where p is defined for $0 \leq s \leq L$ so that

$$
\frac{\partial p}{\partial t}=D \frac{\partial^{2} p}{\partial s^{2}}
$$

and

$$
\begin{aligned}
p(0, t) & =p(L, t)=0 \\
p(s, 0) & =1
\end{aligned}
$$

Obtain a solution for $p(s, t)$ by separation of variables, and hence show that

$$
G(t)=G_{e} \sum_{n \text { odd }} \frac{8}{\pi^{2} n^{2}} \exp \left(-\frac{n^{2} t}{\tau_{d}}\right)
$$

obtaining an expression for the time τ_{d} in terms of L and D.
You may use the result $\int_{0}^{\pi} \sin (m x) \sin (n x) d x=\frac{\pi}{2} \delta_{m n}$.
(c) Obtain the viscosity and recoil after steady shear, R,

$$
R=\frac{\dot{\gamma} \int_{0}^{\infty} s G(s) d s}{\int_{0}^{\infty} G(s) d s}
$$

for the reptation model.
You may use the results $\sum_{p \text { odd }} p^{-4}=\frac{\pi^{4}}{96}, \sum_{p \text { odd }} p^{-6}=\frac{\pi^{6}}{960}$.

MATH5450M01

7. In the Upper Convected Maxwell model the extra stress $\boldsymbol{\sigma}$ is given by

$$
\boldsymbol{\sigma}=G \mathbf{A}
$$

where the structure tensor A satisfies

$$
\frac{d \mathbf{A}}{d t}=\mathbf{K} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{K}^{T}-\frac{1}{\tau}(\mathbf{A}-\mathbf{I})
$$

Here \mathbf{K} is the velocity gradient tensor, with components $K_{i j}=\frac{\partial u_{i}}{\partial x_{j}}$ and G and τ are both positive constants.
(a) Write down the equations for evolution of the tensor components, $A_{x x}, A_{x y}, A_{y y}$ and $A_{z z}$ when an Upper Convected Maxwell fluid is subjected to a transient shear flow of the form $\mathbf{u}=(y f(t), 0,0)$, for $t>0$.
Deduce that if $\mathbf{A}=\mathbf{I}$ at $t=0$, the second normal stress difference $N_{2}=\sigma_{y y}-\sigma_{z z}$ is equal to zero for $t>0$ for all functions $f(t)$.
(b) Show that if

$$
f(t)=a \exp (a t)
$$

the shear stress $\sigma_{x y}$ for $t>0$ is given by

$$
\sigma_{x y}=\frac{a \tau}{a \tau+1}[\exp (a t)-\exp (-t / \tau)] .
$$

Find the form of the first normal stress difference $N_{1}=\sigma_{x x}-\sigma_{y y}$.

Formula Sheet

Cartesian coordinates

 pressure, p, velocity, $\mathbf{u}=u \mathbf{e}_{x}+v \mathbf{e}_{y}+w \mathbf{e}_{z}$, velocity gradient, \mathbf{K} with $K_{i j}=\frac{\partial u_{i}}{\partial x_{j}}$$$
\left.\begin{array}{r}
\nabla p=\frac{\partial p}{\partial x} \mathbf{e}_{x}+\frac{\partial p}{\partial y} \mathbf{e}_{y}+\frac{\partial p}{\partial z} \mathbf{e}_{z}, \\
\mathbf{K}=\left(\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right) \quad \nabla \cdot \mathbf{u}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}, \\
\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{y x}}{\partial y}+\frac{\partial \sigma_{z x}}{\partial z} \\
\frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \sigma_{z y}}{\partial z} \\
\frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{y z}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}
\end{array}\right)
$$

Cylindrical Polar Coordinates

velocity, $\mathbf{u}=u \mathbf{e}_{r}+v \mathbf{e}_{\theta}+w \mathbf{e}_{z}$.

$$
\begin{gathered}
\nabla p=\frac{\partial p}{\partial r} \mathbf{e}_{r}+\frac{1}{r} \frac{\partial p}{\partial \theta} \mathbf{e}_{\theta}+\frac{\partial p}{\partial z} \mathbf{e}_{z}, \quad \nabla \cdot \mathbf{u}=\frac{1}{r} \frac{\partial}{\partial r}(r u)+\frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{\partial w}{\partial z}, \\
\mathbf{K}=\left(\begin{array}{ccc}
\frac{\partial u}{\partial r} & \frac{1}{r} \frac{\partial u}{\partial \theta}-\frac{v}{r} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial r} & \frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{u}{r} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial r} & \frac{1}{r} \frac{\partial w}{\partial \theta} & \frac{\partial w}{\partial z}
\end{array}\right) \\
\nabla \cdot \boldsymbol{\sigma}=\left(\begin{array}{c}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \sigma_{r r}\right)+\frac{1}{r} \frac{\partial \sigma_{\theta r}}{\partial \theta}+\frac{\partial \sigma_{z r}}{\partial z}-\frac{\sigma_{\theta \theta}}{r} \\
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \sigma_{r \theta}\right)+\frac{1}{r} \frac{\partial \sigma_{\theta \theta}}{\partial \theta}+\frac{\partial \sigma_{z \theta}}{\partial z}+\frac{\sigma_{\theta r}-\sigma_{r \theta}}{r} \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \sigma_{r z}\right)+\frac{1}{r} \frac{\partial \sigma_{\theta z}}{\partial \theta}+\frac{\partial \sigma_{z z}}{\partial z}
\end{array}\right)
\end{gathered}
$$

Spherical Polar Coordinates

$\mathbf{u}=u \mathbf{e}_{r}+v \mathbf{e}_{\theta}+w \mathbf{e}_{\phi}$

$$
\begin{aligned}
& \nabla p=\frac{\partial p}{\partial r} \mathbf{e}_{r}+\frac{1}{r} \frac{\partial p}{\partial \theta} \mathbf{e}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi} \mathbf{e}_{\phi}, \\
& \nabla \cdot \mathbf{u}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(v \sin \theta)+\frac{1}{r \sin \theta} \frac{\partial w}{\partial \phi}, \\
& \mathbf{K}=\left(\begin{array}{ll}
\frac{\partial u}{\partial r} & \frac{1}{r} \frac{\partial u}{\partial \theta}-\frac{v}{r} \\
\frac{\partial v}{\partial r} & \frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{u}{r} \\
\frac{1}{r \sin \theta} \frac{\partial u}{\partial \phi}-\frac{w}{r} \\
\frac{\partial w}{\partial r} & \frac{1}{r} \frac{\partial w}{\partial \theta} \\
\frac{1}{\partial \phi}-\frac{w}{r} \cot \theta \\
r \sin \theta & \frac{\partial w}{\partial \phi}+\frac{u}{r}+\frac{v}{r} \cot \theta
\end{array}\right) \\
& \nabla \cdot \boldsymbol{\sigma}=\left(\begin{array}{c}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \sigma_{r r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sigma_{\theta r} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial \sigma_{\phi r}}{\partial \phi}-\frac{\sigma_{\theta \theta}+\sigma_{\phi \phi}}{r} \\
-\frac{1}{r^{3}} \frac{\partial}{\partial r}\left(r^{3} \sigma_{r \theta}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sigma_{\theta \theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial \sigma_{\phi \theta}}{\partial \phi}+\frac{\sigma_{\theta r}-\sigma_{r \theta}-\sigma_{\phi \phi} \cot \theta}{r} \\
\frac{1}{r^{3}} \frac{\partial}{\partial r}\left(r^{3} \sigma_{r \phi}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sigma_{\theta \phi} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial \sigma_{\phi \phi}}{\partial \phi}+\frac{\sigma_{\phi r}-\sigma_{r \phi}+\sigma_{\phi \theta} \cot \theta}{r}
\end{array}\right)
\end{aligned}
$$

