MATH5300-01

This question paper consists of 2 printed
Only approved basic scientific calculators may be used pages plus a formula sheet, each of which is identified by the reference MATH5300-01

© UNIVERSITY OF LEEDS

Examination for the Module MATH5300
 (May 2006)

Applied Financial Modelling

Time allowed: 3 hours

Attempt no more than 5 questions. All questions are of equal value.
Show your working in answers to all questions.

1. (a) How much must be deposited in a bank account on 1 August 2006, in order to have $£ 100,000$ in the account on 7 August 2007? Assume that interest is compounded continuously with rate 9%, and that a year has 365 days.
(b) Let \mathbf{G} be a Gaussian random variable with mean 0 and variance 1.
i. If $\mathbf{X}=3.2 \mathbf{G}$, find the mean and variance of \mathbf{X}.
ii. If $\mathbf{Y}=\exp (-1.5 \mathbf{G})$, find the mean and variance of \mathbf{Y}.
iii. If $\mathbf{Z}=3 \mathbf{G}^{2}+1$, find the mean and variance of \mathbf{Z}. Hint: $\mathbb{E}\left(\mathbf{G}^{4}\right)=3$
(c) The price of the stock $O R A$ at time t is \mathbf{S}_{t} where

$$
\mathbf{S}_{t}=100 \exp \left(5 t+2 \mathbf{W}_{t}\right)
$$

and \mathbf{W} is the Wiener process.
i. Find $\ln \left(\mathbb{E}\left(\mathbf{S}_{t}\right)\right)$.
ii. Find $\mathbb{E}\left(\ln \mathbf{S}_{t}\right)$.
iii. If $\mathbf{S}_{1.5}=150$, find $\mathbb{E}\left(\mathbf{S}_{1.75}\right)$.
2. (a) The random variable \mathbf{Y} is defined as $\mathbf{Y}=\exp \left(t^{2}+\frac{1}{2} \sqrt{t} \mathbf{G}\right)$, where \mathbf{G} is a Gaussian random variable with mean zero and variance 1. Calculate $\mathbb{E}(\sqrt{\mathbf{Y}})$.
(b) The stochastic process \mathbf{Z}_{t} is defined as $\mathbf{Z}_{t}=\ln \left(1+\mathbf{W}_{t}^{2}\right)$, where \mathbf{W} is the Wiener process. Find the stochastic differential equation for \mathbf{Z}_{t}.
(c) The fair price of a financial derivative is

$$
h\left(\mathbf{S}_{t}, t\right)=63 \mathrm{e}^{-r(T-t)} \mathbf{S}_{t}^{\alpha}
$$

What values of α are allowed under the Black-Scholes theory?
3. Let $\mathbf{U}_{t}=\exp \left(\sqrt{t}+\mathbf{W}_{t}^{4}\right)$, where \mathbf{W} is the Wiener process. and $t>0$.
(a) Write down the integral that gives $\mathcal{P}\left[\mathbf{U}_{t}<x\right]$ as a function of x.
(b) Find the probability density of \mathbf{U}_{t}.
(c) Find the stochastic differential equation for \mathbf{U}_{t}.
(d) Sketch some sample trajectories of \mathbf{U}_{t}.
4. (a) A "collar option" has a payoff

$$
\mathbf{C}_{T}=2 \min \left(\max \left(\mathbf{S}_{T}, K_{1}\right), K_{2}\right),
$$

where K_{1} and K_{2} are real numbers with $0<K_{1}<K_{2}$. Sketch the payoff diagram as a function of \mathbf{S}_{T}.
Hint: consider the three cases $\mathbf{S}_{T}<K_{1}, K_{1} \leq \mathbf{S}_{T} \leq K_{2}$ and $\mathbf{S}_{T}>K_{2}$.
(b) Describe the differences between a discrete random variable and a continuous random variable. Give examples of each. How are probabilities assigned?
(c) The function

$$
V\left(\mathbf{S}_{t}, t\right)=E \mathrm{e}^{-r(T-t)}\left(1-\Phi\left(b\left(\mathbf{S}_{t}, t\right)\right)\right)
$$

where

$$
b\left(\mathbf{S}_{t}, t\right)=\frac{\left(\frac{1}{2} \sigma^{2}-r\right)(T-t)+\ln K-\ln \mathbf{S}_{t}}{\sigma \sqrt{T-t}}
$$

and E and K are constants, is the fair price of a financial derivative with expiry date T.
What is the payoff of the contract?
5. (a) Using the Black-Scholes asset price model, show that the probability that a European put option, with strike price E at expiry date T on an asset whose price at time $t<T$ is \mathbf{S}_{t}, is exercised is equal to the probability that

$$
\mathbf{G}>b\left(\mathbf{S}_{t}, t\right),
$$

where \mathbf{G} is a Gaussian random variable with mean zero and variance 1 , and

$$
b\left(\mathbf{S}_{t}, t\right)=\frac{\ln \left(\mathbf{S}_{t} / E\right)+\left(\mu-\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}} .
$$

(b) A "digital put" option has a payoff

$$
\mathbf{P}_{T}= \begin{cases}0, & \mathbf{S}_{T} \geq K, \\ 10, & \mathbf{S}_{T}<K,\end{cases}
$$

where \mathbf{S}_{t} is the underlying asset price at time t.
i. Use risk-neutral valuation to show that the fair price for the contract for $t<T$ is

$$
P\left(\mathbf{S}_{t}, t\right)=10 \mathrm{e}^{-r(T-t)}\left(1-\Phi\left(d\left(\mathbf{S}_{t}, t\right)\right)\right),
$$

and find $d\left(\mathbf{S}_{t}, t\right)$. Hint: use the answer to part (a)
ii. Check that $P\left(\mathbf{S}_{t}, t\right)$ satisfies the Black-Scholes partial differential equation. Hint: use the properties of $\Phi(x)$ on the formula sheet.
6. A financial institution offers a contract that pays an amount equal to $\left(\ln \mathbf{S}_{T}\right)^{2}$ at time T, where \mathbf{S}_{t} is the underlying asset price at time t.
(a) Use risk-neutral valuation to calculate the fair price for the contract for $t<T$.
(b) Check that your answer satisfies the Black-Scholes partial differential equation.

END OF EXAM

Formulas

(1) Put-call parity:

$$
\mathbf{C}_{t}+E \mathrm{e}^{-r(T-t)}=\mathbf{P}_{t}+\mathbf{S}_{t}
$$

(2) If the function $f(x)$ is the probability density of the random variable \mathbf{X} then

$$
\mathcal{P}[a<\mathbf{X}<b]=\int_{a}^{b} f(x) \mathrm{d} x .
$$

The mean of the random variable is

$$
\mathbb{E}(\mathbf{X})=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x
$$

For a Gaussian random variable with mean μ and standard deviation σ,

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right)
$$

If $\mathbf{Y}=h(\mathbf{X})$, then the mean of the random variable \mathbf{Y} is

$$
\mathbb{E}(\mathbf{Y})=\int_{-\infty}^{\infty} h(x) f(x) \mathrm{d} x
$$

(3) If \mathbf{G} is a Gaussian random variable with mean 0 and variance 1 then $\mathbb{E}(\exp (m+s \mathbf{G}))=\mathrm{e}^{m+\frac{1}{2} s^{2}}$.
(4) The function $\Phi(x)$ is

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{1}{2} y^{2}\right) \mathrm{d} y
$$

Three properties are

$$
\begin{gathered}
\Phi(-x)=1-\Phi(x), \\
\Phi^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right)
\end{gathered}
$$

and

$$
\Phi^{\prime \prime}(x)=-x \Phi^{\prime}(x) .
$$

(5) The Ito change-of-variables formula. If

$$
\mathrm{d} \mathbf{R}_{t}=a\left(\mathbf{R}_{t}, t\right) \mathrm{d} t+b(\mathbf{R}, t) \mathrm{d} \mathbf{W}_{t}
$$

and

$$
\mathbf{V}_{t}=h\left(\mathbf{R}_{t}, t\right)
$$

then

$$
\mathrm{d} \mathbf{V}_{t}=\left(\frac{\partial h}{\partial x} a+\frac{\partial h}{\partial t}+\frac{1}{2} \frac{\partial^{2} h}{\partial x^{2}} b^{2}\right) \mathrm{d} t+\left(\frac{\partial h}{\partial x} b\right) \mathrm{d} \mathbf{W}_{t}
$$

(6) The Black-Scholes asset price model:

$$
\mathbf{S}_{t}=\mathbf{S}_{0} \exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma \mathbf{W}_{t}\right)
$$

(7) The Black-Scholes partial differential equation:

$$
\frac{\partial h}{\partial t}+\frac{1}{2} \sigma^{2} \mathbf{S}_{t}^{2} \frac{\partial^{2} h}{\partial \mathbf{S}_{t}^{2}}+r \mathbf{S}_{t} \frac{\partial h}{\partial \mathbf{S}_{t}}-r h=0
$$

