MATH5300-01

This question paper consists of 2 printed
Only approved basic scientific calculators may be used pages plus a formula sheet, each of which is identified by the reference MATH5300-01
© UNIVERSITY OF LEEDS

Examination for the Module MATH5300
 (May 2005)

Applied Financial Modelling
Time allowed: 3 hours

Attempt no more than 5 questions. All questions are of equal value. Show your working in answers to all questions.

1. Assume that interest is compounded continuously with rate 5%, and that a year has 365 days.
(a) i. If $£ 1000000$ is deposited in a bank account on 1 August 2005, how much will be in the account on 2 August 2005?
ii. How much must be deposited in a bank account on 1 August 2005, in order to have $£ 2000000$ on 24 August 2006?
(b) The price of a European put option is $£ 1.00$. Its expiry date is 1 year from now and its strike price is $£ 5.00$. The current price of the stock is $£ 4.00$.
i. Use put-call parity to find the current price of a call option on the same stock.
ii. If the price of the stock suddenly increases to $£ 6.00$, will the prices of the put and call options increase or decrease? Give a short explanation of your answers.
(c) An investor buys shares in the company PAI at $£ 1.25$ on 1 January 2005, receives a dividend of $£ 0.10$ per share on 1 July 2005 and sells the shares for $£ 1.31$ on 1 July 2006. What is the profit or loss per share, taking into account interest rates?
2. (a) The prices of European call and put options on the same underlying asset, $C\left(\mathbf{S}_{t}, t\right)$ and $P\left(\mathbf{S}_{t}, t\right)$, are

$$
C\left(\mathbf{S}_{t}, t\right)=\mathbf{S}_{t} \Phi\left(d_{1}\right)-E \mathrm{e}^{-r(T-t)} \Phi\left(d_{2}\right)
$$

and

$$
P\left(\mathbf{S}_{t}, t\right)=-\mathbf{S}_{t} \Phi\left(-d_{1}\right)+E \mathrm{e}^{-r(T-t)} \Phi\left(-d_{2}\right),
$$

where

$$
d_{1}=\frac{\ln \left(\mathbf{S}_{t} / E\right)+\left(r+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}} \quad \text { and } \quad d_{2}=\frac{\ln \left(\mathbf{S}_{t} / E\right)+\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}} .
$$

i. Using the properties of $\Phi(x)$, show that these prices obey put-call parity.
ii. Find simpler formulas for $C\left(\mathbf{S}_{t}, t\right)$ and $P\left(\mathbf{S}_{t}, t\right)$, valid as $\mathbf{S}_{t} / E \rightarrow \infty$.
(b) Explain why the price of an American put option is not the same as that of a European put option.
3. Which of the following is the fair price of a financial derivative?
(a) $p_{1}\left(\mathbf{S}_{t}, t\right)=\mathbf{S}_{t}^{-r / 2 \sigma^{2}}$.
(b) $p_{2}\left(\mathbf{S}_{t}, t\right)=\mathbf{S}_{t}^{-r / \sigma^{2}}$.
(c) $p_{3}\left(\mathbf{S}_{t}, t\right)=\mathbf{S}_{t}^{-2 r / \sigma^{2}}$.
(d) $p_{4}\left(\mathbf{S}_{t}, t\right)=\mathbf{S}_{t}$.
(e) $p_{5}\left(\mathbf{S}_{t}, t\right)=\mathbf{S}_{t}^{2}$.
(f) $p_{6}\left(\mathbf{S}_{t}, t\right)=\mathrm{e}^{r t}$.
(g) $p_{7}\left(\mathbf{S}_{t}, t\right)=\mathbf{S}_{t} \mathrm{e}^{\sigma t}$.
4. Let $\mathbf{V}_{t}=\left(t+\mathbf{W}_{t}^{2}\right)^{\frac{1}{2}}$, where \mathbf{W} is the Wiener process and $t>0$.
(a) Write down the integral that gives $\mathcal{P}\left[\mathbf{V}_{t}<x\right]$ for any $x>0$.
(b) Find the probability density of \mathbf{V}_{t}.
(c) Find the stochastic differential equation for \mathbf{V}_{t}.
(d) Sketch some sample trajectories of \mathbf{V}_{t}.
5. A random variable \mathbf{X} has the probability density $f(x)=N \mathrm{e}^{-\lambda x}$, where N and λ are constants and $x \geq 0$.
(a) Using the general properties of probability densities, show that $N=\lambda$.
(b) Find $\mathbb{E}(\mathbf{X})$.
(c) Find the standard deviation of \mathbf{X}.
6. (a) Using the Black-Scholes asset price model, show that the probability that a European call option, with strike price E at expiry date T on an asset whose price at time $t<T$ is \mathbf{S}_{t}, is exercised is equal to the probability that

$$
\mathbf{G}>-d
$$

where \mathbf{G} is a Gaussian random variable with mean zero and variance 1, and

$$
d=\frac{\ln \left(\mathbf{S}_{t} / E\right)+\left(\mu-\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}
$$

(b) In general one may wish to define the rate of return of an asset \mathbf{S} as η, where the asset price at time t is

$$
\mathbf{S}_{t}=\mathbf{S}_{0} \mathrm{e}^{\eta t}
$$

Show that, according to the Black-Scholes asset price model, the rate of return is a Gaussian random variable. Find its mean and standard deviation.
(c) Using the definition of $\Phi(x)$ on the formula sheet, show that $\Phi(-x)=1-\Phi(x)$.
7. A financial institution offers a contract called a "cash-or-nothing" option, that gives a payoff of a fixed amount A at time T if $\mathbf{S}_{T}>E$, and zero if $\mathbf{S}_{T} \leq E$.
(a) Use risk-neutral valuation to calculate the fair price for the contract. [Hint: you may use the result given in question 6(a).]
(b) Check that your answer satisfies the Black-Scholes partial differential equation.

END OF EXAM

Formulas

(1) Put-call parity:

$$
\mathbf{C}_{t}+E \mathrm{e}^{-r(T-t)}=\mathbf{P}_{t}+\mathbf{S}_{t}
$$

(2) If the function $f(x)$ is the probability density of the random variable \mathbf{X} then

$$
\mathcal{P}[a<\mathbf{X}<b]=\int_{a}^{b} f(x) \mathrm{d} x .
$$

The mean of the random variable is

$$
\mathbb{E}(\mathbf{X})=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x
$$

For a Gaussian random variable with mean μ and standard deviation σ,

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right)
$$

If $\mathbf{Y}=h(\mathbf{X})$, then the mean of the random variable \mathbf{Y} is

$$
\mathbb{E}(\mathbf{Y})=\int_{-\infty}^{\infty} h(x) f(x) \mathrm{d} x
$$

(3) If \mathbf{G} is a Gaussian random variable with mean 0 and variance 1 then $\mathbb{E}(\exp (m+s \mathbf{G}))=\mathrm{e}^{m+\frac{1}{2} s^{2}}$.
(4) The function $\Phi(x)$ is

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{1}{2} y^{2}\right) \mathrm{d} y
$$

Two properties are

$$
\Phi(-x)=1-\Phi(x)
$$

and

$$
\Phi^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right) .
$$

(5) The Ito change-of-variables formula. If

$$
\mathrm{d} \mathbf{R}_{t}=a\left(\mathbf{R}_{t}, t\right) \mathrm{d} t+b(\mathbf{R}, t) \mathrm{d} \mathbf{W}_{t}
$$

and

$$
\mathbf{V}_{t}=h\left(\mathbf{R}_{t}, t\right)
$$

then

$$
\mathrm{d} \mathbf{V}_{t}=\left(\frac{\partial h}{\partial x} a+\frac{\partial h}{\partial t}+\frac{1}{2} \frac{\partial^{2} h}{\partial x^{2}} b^{2}\right) \mathrm{d} t+\left(\frac{\partial h}{\partial x} b\right) \mathrm{d} \mathbf{W}_{t} .
$$

(6) The Black-Scholes asset price model:

$$
\mathbf{S}_{t}=\mathbf{S}_{0} \exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma \mathbf{W}_{t}\right)
$$

(7) The Black-Scholes partial differential equation:

$$
\frac{\partial h}{\partial t}+\frac{1}{2} \sigma^{2} \mathbf{S}_{t}^{2} \frac{\partial^{2} h}{\partial \mathbf{S}_{t}^{2}}+r \mathbf{S}_{t} \frac{\partial h}{\partial \mathbf{S}_{t}}-r h=0
$$

