MATH5300-01

This question paper consists of 2 printed
Only approved basic scientific calculators may be used pages plus a formula sheet, each of which is identified by the reference MATH5300-01

© UNIVERSITY OF LEEDS

Examination for the Module MATH5300
 (May 2004)

Applied Financial Modelling

Time allowed: 3 hours

Attempt no more than 5 questions. All questions are of equal value.
Show your working in answers to all questions.

1. Assume that interest is compounded continuously with interest rate 5%.
(a) i. If $£ 1000$ is deposited in a bank account on 1 August 2004, how much will be in the account on 1 August 2005?
ii. If $£ 1000$ is deposited in a bank account on 1 August 2004, how much will be in the account on 1 September 2005?
iii. How much must be deposited in a bank account on 1 August 2004, in order to have $£ 20001$ August 2006?
(b) The price of a European call option is $£ 1.3231$. Its expiry date is 1 year from now and its strike price is $£ 4$. Given that the current price of the stock is $£ 5$, use put-call parity to find the current price of a put option on the same stock.
2. (a) If \mathbf{W}_{t} is the Wiener process,
i. Write the probability density of the random variable $\mathbf{W}_{t_{2}}-\mathbf{W}_{t_{1}}$.
ii. If $\mathbf{W}_{3}=-1$, write the probability density of the random variable \mathbf{W}_{4}.
iii. If $\mathbf{Y}_{0}=0$ and $\mathbf{Y}_{t}=\alpha t+\beta \mathbf{W}_{t}$, where α and β are constants, write the probability density of \mathbf{Y}_{t}.
(b) If \mathbf{G} is a Gaussian random variable with mean zero and variance 1 , and

$$
\mathbf{X}=\ln \left(\mathbf{G}^{2}\right)
$$

find the probability density of \mathbf{X}.
3. The price of the stock $X Y Z$ at time t is \mathbf{S}_{t} where

$$
\mathbf{S}_{t}=\mathbf{S}_{0} \exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma \mathbf{W}_{t}\right) .
$$

(a) Write down the formula for \mathbf{S}_{t}^{2}. Find $\mathbb{E}\left(\mathbf{S}_{t}^{2}\right)$.

Hint: Use (3) from the formula sheet.
(b) A financial institution plans to offer a derivative with payoff equal to \mathbf{S}_{T}^{2}. Use riskneutral valuation to calculate the fair price for this derivative at any time $0 \leq t \leq T$. Check that your answer satisfies the Black-Scholes partial differential equation.
4. (a) Find a value of n such that

$$
h\left(\mathbf{S}_{t}, t\right)=\mathbf{S}_{t}^{n} \mathrm{e}^{\left(\sigma^{2}-2 r\right)(T-t)}
$$

is the fair price of a financial derivative with expiry date T, where \mathbf{S}_{t} is the price of the underlying asset at time t. What is its payoff?
(b) Find the values of the constants A and B such that the function

$$
U(x, t)=\frac{A}{\sqrt{t}} \exp \left(-\frac{x^{2}}{B t}\right)
$$

is a solution of

$$
\frac{\partial}{\partial t} U(x, t)=\frac{\partial^{2}}{\partial x^{2}} U(x, t)
$$

5. (a) Let $\mathbf{V}_{t}=\mathbf{W}_{t}{ }^{2}$. Find the stochastic differential equation for \mathbf{V}_{t}.
(b) Let $\mathbf{Z}_{t}=\exp \left(\mathbf{W}_{t}-\alpha t\right)$. For which value of α is $\mathbb{E}\left(\mathbf{Z}_{t}\right)$ constant in time?
6. (a) The fair price of a European call option is $C\left(\mathbf{S}_{t}, t\right)$ where

$$
\begin{gathered}
C(S, t)=S \Phi\left(d_{1}\right)-E \mathrm{e}^{-r(T-t)} \Phi\left(d_{2}\right) \\
d_{1}=\frac{\ln (S / E)+\left(r+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}} \quad \text { and } \quad d_{2}=\frac{\ln (S / E)+\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}
\end{gathered}
$$

Use put-call parity to find the fair price of a European put option.
(b) Explain why the price of an American call option is the same as that of a European call option.
7. (a) Show that, in the Black-Scholes theory, the probability that a European call option is exercised, given that the expiry date is T, the strike price is K and the asset price at time t is \mathbf{S}_{t}, is

$$
\mathcal{P}[\text { option exercised }]=\Phi\left(b\left(\mathbf{S}_{t}, t\right)\right),
$$

where

$$
b(x, t)=\frac{\left(\mu-\frac{1}{2} \sigma^{2}\right)(T-t)+\ln \frac{x}{K}}{\sigma \sqrt{T-t}}
$$

(b) A financial institution offers a contract whose payoff is equal to $£ 100$ if $\mathbf{S}_{T}>K$ and is equal to zero otherwise. Use risk-neutral valuation to find a fair price for the contract. Check that your answer satisfies the Black-Scholes partial differential equation.

END OF EXAM

Formulas

(1) Put-call parity:

$$
C+E \mathrm{e}^{-r T}=P+S
$$

(2) If the function $f(x)$ is the probability density of the random variable \mathbf{X} then

$$
\mathcal{P}[a<\mathbf{X}<b]=\int_{a}^{b} f(x) \mathrm{d} x
$$

The mean of the random variable is

$$
\mathbb{E}(\mathbf{X})=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x
$$

For a Gaussian random variable with mean μ and standard deviation σ,

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right)
$$

If $\mathbf{Y}=h(\mathbf{X})$, then the mean of the random variable \mathbf{Y} is

$$
\mathbb{E}(\mathbf{Y})=\int_{-\infty}^{\infty} h(x) f(x) \mathrm{d} x
$$

(3) If \mathbf{G} is a Gaussian random variable with mean 0 and variance 1 then $\mathbb{E}(\exp (m+s \mathbf{G}))=\mathrm{e}^{m+\frac{1}{2} s^{2}}$.
(4) The function $\Phi(x)$ is

$$
\begin{gathered}
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{1}{2} y^{2}\right) \mathrm{d} y \\
\Phi(-x)=1-\Phi(x)
\end{gathered}
$$

(5) The Ito change-of-variables formula. If

$$
\mathrm{d} \mathbf{R}_{t}=a\left(\mathbf{R}_{t}, t\right) \mathrm{d} t+b(\mathbf{R}, t) \mathrm{d} \mathbf{W}_{t}
$$

and

$$
\mathbf{V}_{t}=h\left(\mathbf{R}_{t}, t\right)
$$

then

$$
\mathrm{d} \mathbf{V}_{t}=\left(\frac{\partial h}{\partial x} a+\frac{\partial h}{\partial t}+\frac{1}{2} \frac{\partial^{2} h}{\partial x^{2}} b^{2}\right) \mathrm{d} t+\left(\frac{\partial h}{\partial x} b\right) \mathrm{d} \mathbf{W}_{t} .
$$

(6) The Black-Scholes asset price model:

$$
\mathbf{S}_{t}=\mathbf{S}_{0} \exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma \mathbf{W}_{t}\right)
$$

(7) The Black-Scholes partial differential equation:

$$
\frac{\partial h}{\partial t}+\frac{1}{2} \frac{\partial^{2} h}{\partial \mathbf{S}_{t}^{2}} \sigma^{2} \mathbf{S}_{t}^{2}+r \mathbf{S}_{t} \frac{\partial h}{\partial \mathbf{S}_{t}}-r h=0
$$

