MATH-5031M01

This question paper consists of 5 printed pages, each of which is identified by the reference MATH-5031M01

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-5031M

(January 2006)

Differential Geometry 2

Time allowed: 3 hours

Answer a maximum of **four** questions from Section A and a maximum of **two** questions from Section B. All questions carry equal marks.

Throughout this paper, by 'surface' we shall mean 'smooth regular embedded m-surface in \mathbb{R}^n for some positive integers m and n'.

SECTION A

1. (a) Let $\gamma : [0, b] \to \mathbb{R}^2$ be a regularly parametrized curve. What is meant by saying that γ is closed? What is meant by the total curvature of a regularly parametrized closed curve?

Let $\gamma_0 : [0, b_0] \to \mathbb{R}^2$ and $\gamma_1 : [0, b_1] \to \mathbb{R}^2$ be regularly parametrized closed curves. What is meant by a regular homotopy from γ_0 to γ_1 ? State the Whitney-Graustein Theorem.

(b) Let $\gamma(t) = (4\sin 2t, 4\cos 2t)$ $(t \in [0, 5\pi])$. Calculate the total curvature of γ .

(c) By finding a suitable regular homotopy and quoting the Whitney–Graustein Theorem, or otherwise, find the total curvature of the closed curve $\alpha : [0, 5\pi] \to \mathbb{R}^2$ given by

$$\alpha(t) = (4\sin 2t - 2\sin t, 4\cos 2t + 2\cos t).$$

Show that

$$H(u,t) = (4u\sin 2t - 2\sin t, 4u\cos 2t + 2\cos t) \qquad (u \in [0,1], t \in [0,5\pi])$$

does not define a regular homotopy.

2. (a) Let $\varphi : M \to M'$ be a smooth map between surfaces, and let $p \in M$. Define what is meant by the differential $d\varphi_p: T_pM \to T_{\varphi(p)}M'$ of φ at p. Let

$$X: U \to M$$
, $\mathbf{u} = (u_1, \dots, u_m) \mapsto X(\mathbf{u})$

be a local parametrization of M with $X(\mathbf{0}) = p$. Write $\hat{\varphi} = \varphi \circ X$ and $\epsilon_i = \partial X / \partial u_i$ $(i = 1, \ldots, m)$. Show that

$$\mathrm{d}\varphi_p(\epsilon_i) = \frac{\partial \hat{\varphi}}{\partial u_i}(\mathbf{0}) \qquad (i = 1, \dots, m).$$

Deduce that, if $\mathbf{v} \in T_p M$ is given by $\mathbf{v} = \sum_{i=1}^m v_i \epsilon_i$, then

$$\mathrm{d}\varphi_p(\mathbf{v}) = \sum_{i=1}^m v_i \,\mathrm{d}\varphi_p(\epsilon_i)\,.$$

(b) Let $f: M \to M'$ be a smooth map between surfaces. Define what is meant by f is a *local isometry*.

Show that, if f is a local isometry then,

(*) for any smooth curve $\alpha : [a, b] \to M$ defined on a closed interval [a, b], the length of $f \circ \alpha$ is equal to the length of α .

Show conversely that, if $f: M \to M'$ is a smooth map having the property (*), then it is a local isometry.

3. (a) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be the smooth function $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_2^2$. For r > 0, set $S^2(r) = f^{-1}(r)$. Show that f is regular on $S^2(r)$, so that $S^2(r)$ is a 2-surface. Without parametrizing $S^2(r)$, show that its shape operator S at any point $p \in S^2(r)$ is given by

$$S(\mathbf{v}) = c \, \mathbf{v} \qquad \left(\mathbf{v} \in T_p S^2(r)\right)$$

for some constant c to be determined.

(b) Let M be a surface and let $\gamma : I \to M$ be a smooth curve defined on an interval I. Say what is meant by γ is a geodesic on M. Show that the speed $|\gamma'(t)|$ $(t \in I)$ of a geodesic is constant.

(c) Suppose that $\gamma: I \to S^2(r)$ is a geodesic of unit speed. Show that it is a plane curve of constant curvature 1/r; deduce that its track lies on a great circle of $S^2(r)$.

Suppose, instead, that $\gamma : I \to S^2(r)$ is a smooth curve of unit speed whose principal normal makes a constant angle with a unit normal of $S^2(r)$. Show that the track of γ lies on a circle and give the radius of that circle.

[You may assume that the track of a unit speed plane curve of constant curvature 1/r lies on a circle of radius r.] 4. (a) Let $f: M \to M'$ be a smooth map between 2-surfaces. Say what is meant by f is conformal with scale factor λ . Show that a smooth map $f: M \to M'$ is conformal with scale factor λ if and only if

$$\mathrm{d}f_p(\mathbf{v})\cdot\mathrm{d}f_p(\mathbf{w}) = \lambda(p)^2 \,\mathbf{v}\cdot\mathbf{w} \qquad (p \in M, \ \mathbf{v}, \mathbf{w} \in T_p M) \,.$$

Give a formula for the angle between two non-zero vectors, and show that a smooth map $f: M \to M'$ is conformal if and only if it preserves angles in the sense that, for all $p \in M$ and all non-zero $\mathbf{v}, \mathbf{w} \in T_p M$, the vectors $df_p(\mathbf{v})$ and $df_p(\mathbf{w})$ are non-zero and the angle between them is equal to the angle between \mathbf{v} and \mathbf{w} .

(b) Let
$$S^2 = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$$
 and

$$E^{2} = \left\{ (x, y, z) : \frac{x^{2} + y^{2}}{a^{2}} + \frac{z^{2}}{b^{2}} = 1 \right\}$$

where a and b are positive constants. Define a smooth map $f: S^2 \to E^2$ by

$$f(x, y, z) = (ax, ay, bz).$$

Show that f is conformal if and only if a = b. Determine the scale factor of f in this case.

5. (a) Give a formula which defines a local isometry from the plane \mathbb{R}^2 to the unit circular cylinder $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$. [You need not show that this is a local isometry.]

(b) Let M be a 2-surface in \mathbb{R}^3 . What is meant by saying that a property is (A) *intrinsic*, (B) *extrinsic*. Show that the following properties are extrinsic: (i) principal curvatures; (ii) mean curvature; (iii) distance between pairs of points [You may quote the values of the principal curvatures of \mathbb{R}^2 in \mathbb{R}^3 and of C in \mathbb{R}^3 without proof.] State the *Theorema Egregium* of Gauss.

(c) Let M be a closed 2-surface. Explain briefly what is meant by the (i) total curvature of M, (ii) Euler characteristic of M. [You need not define what is meant by a triangulation or show that the Euler characteristic is well defined.] State the Gauss-Bonnet Theorem.

Let M be a closed 2-surface with Euler characteristic 0 and Gauss curvature K satisfying $K \leq 0$ at all points. Show that K is identically zero.

SECTION B

6. (a) Prove that, for any nonnegative real numbers a and b,

$$\sqrt{ab} \le \frac{1}{2}(a+b) \,.$$

Prove that, for any four real numbers a_1, a_2, b_1, b_2 ,

$$\left(\sum_{i=1}^2 a_i b_i\right)^2 \le \left(\sum_{i=1}^2 a_i^2\right) \left(\sum_{i=1}^2 b_i^2\right).$$

(b) Let $C: s \mapsto \mathbf{x}(s) = (x_1(s), x_2(s))$ $(s \in [0, L])$ be a positively oriented unit speed simple closed curve in the plane of length L which encloses an area A. Describe how to construct a circle $\overline{C}: s \mapsto \overline{\mathbf{x}}(s) = (\overline{x}_1(s), \overline{x}_2(s))$ $(s \in [0, L])$ with $\overline{x}_1(s) = x_1(s)$ $(s \in [0, L])$. Show that

$$A + \pi r^2 \le Lr$$
 .

where r is the radius of the circle. Deduce the isoperimetric inequality:

$$4\pi A \le L^2.$$

- 7. Let M be a 2-surface in \mathbb{R}^3 and let $X : U \to M$, $(u, v) \mapsto X(u, v)$ be a local parametrization of M. As usual, write $\epsilon_1 = \partial X/\partial u$ and $\epsilon_2 = \partial X/\partial v$, $E = \epsilon_1 \cdot \epsilon_1$, $F = \epsilon_1 \cdot \epsilon_2 = \epsilon_2 \cdot \epsilon_1$, $G = \epsilon_2 \cdot \epsilon_2$, $L = S(\epsilon_1) \cdot \epsilon_1$, $M = S(\epsilon_1) \cdot \epsilon_2 = S(\epsilon_2) \cdot \epsilon_1$, $N = S(\epsilon_2) \cdot \epsilon_2$, where S is the shape operator of M at p.
 - (a) Show that the Gauss curvature K of M at a point in the image of X is given by

$$K = \frac{LN - M^2}{EG - F^2} \,.$$

(b) Write

$$X_{uu} = \Gamma_{11}^{1} X_{u} + \Gamma_{11}^{2} X_{v} + L \mathbf{N}$$

$$X_{uv} = \Gamma_{12}^{1} X_{u} + \Gamma_{12}^{2} X_{v} + M \mathbf{N}$$

$$X_{vu} = \Gamma_{21}^{1} X_{u} + \Gamma_{21}^{2} X_{v} + M \mathbf{N}$$

$$X_{vv} = \Gamma_{22}^{1} X_{u} + \Gamma_{22}^{2} X_{v} + N \mathbf{N}$$

Suppose that F is identically zero. Show that

$$\Gamma_{11}^1 = \frac{1}{2} \frac{E_u}{E} \,,$$

and find similar formulae for the other Γ_{ij}^k (i, j, k = 1, 2).

Show that $LN - M^2$ is expressible in terms of these functions and E, G and their derivatives. Deduce that the Gauss curvature K is expressible in terms of E, G and their derivatives. [You need not find the exact expression for $LN - M^2$ or for K.] 8. (a) Let M be a surface. Define what is meant by a (smooth) Riemannian metric on M.

(b) Let $\mathbb{R}^2_+ = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ and let g be the hyperbolic metric on \mathbb{R}^2_+ given at a point p = (x, y) of \mathbb{R}^2_+ by

$$g_p(\mathbf{v},\mathbf{w}) = rac{1}{y^2} \, \mathbf{v} \cdot \mathbf{w}$$
 .

Show that the following bijective smooth maps of (\mathbb{R}^2_+, g) are isometries:

(i)
$$\psi(x,y) = (x+\lambda, y)$$
 $(\lambda \in \mathbb{R}),$
(ii) $\psi(x,y) = (\lambda x, \lambda y)$ $(\lambda \in \mathbb{R}, \lambda \neq 0),$
(iii) $\psi(x,y) = (-x, y),$
(iv) $\psi(x,y) = \left(\frac{x}{x^2+y^2}, \frac{y}{x^2+y^2}\right).$

[You do not need to show that these maps are smooth and bijective, and you may assume that a smooth bijective map $\psi : \mathbb{R}^2_+ \to \mathbb{R}^2_+$ is an isometry if and only if, for each $p \in \mathbb{R}^2_+$, there is a basis $\{e_1, e_2\}$ of $T_p \mathbb{R}^2_+$ such that $g_{\psi(p)}(\mathrm{d}\psi_p(e_i), \mathrm{d}\psi_p(e_j)) = g_p(e_i, e_j)$ (i = 1, 2).]

(c) Find an isometry of (\mathbb{R}^2_+, g) which preserves the semicircle of centre (0, 0), radius 3, but is not the identity map. Hence find $a \in (0, \infty)$ such that the distance from (0, 1) to (0, 2) is equal to the distance of (0, a) to (0, 9) without calculating these distances.

END