MATH-5031M01

This question paper consists of 5 printed pages, each of which is identified by the reference MATH-5031M01

Only approved basic scientific calculators may be used.
© UNIVERSITY OF LEEDS
Examination for the Module MATH-5031M
(January 2006)

Differential Geometry 2

Time allowed: 3 hours

Answer a maximum of four questions from Section A and a maximum of two questions from Section B. All questions carry equal marks.

Throughout this paper, by 'surface' we shall mean 'smooth regular embedded m-surface in \mathbb{R}^{n} for some positive integers m and n '.

SECTION A

1. (a) Let $\gamma:[0, b] \rightarrow \mathbb{R}^{2}$ be a regularly parametrized curve. What is meant by saying that γ is closed? What is meant by the total curvature of a regularly parametrized closed curve?

Let $\gamma_{0}:\left[0, b_{0}\right] \rightarrow \mathbb{R}^{2}$ and $\gamma_{1}:\left[0, b_{1}\right] \rightarrow \mathbb{R}^{2}$ be regularly parametrized closed curves. What is meant by a regular homotopy from γ_{0} to γ_{1} ? State the Whitney-Graustein Theorem.
(b) Let $\gamma(t)=(4 \sin 2 t, 4 \cos 2 t) \quad(t \in[0,5 \pi])$. Calculate the total curvature of γ.
(c) By finding a suitable regular homotopy and quoting the Whitney-Graustein Theorem, or otherwise, find the total curvature of the closed curve $\alpha:[0,5 \pi] \rightarrow \mathbb{R}^{2}$ given by

$$
\alpha(t)=(4 \sin 2 t-2 \sin t, 4 \cos 2 t+2 \cos t) .
$$

Show that

$$
H(u, t)=(4 u \sin 2 t-2 \sin t, 4 u \cos 2 t+2 \cos t) \quad(u \in[0,1], t \in[0,5 \pi])
$$

does not define a regular homotopy.
2. (a) Let $\varphi: M \rightarrow M^{\prime}$ be a smooth map between surfaces, and let $p \in M$. Define what is meant by the differential $\mathrm{d} \varphi_{p}: T_{p} M \rightarrow T_{\varphi(p)} M^{\prime}$ of φ at p. Let

$$
X: U \rightarrow M, \quad \mathbf{u}=\left(u_{1}, \ldots, u_{m}\right) \mapsto X(\mathbf{u})
$$

be a local parametrization of M with $X(\mathbf{0})=p$. Write $\hat{\varphi}=\varphi \circ X$ and $\epsilon_{i}=\partial X / \partial u_{i}$ $(i=1, \ldots, m)$. Show that

$$
\mathrm{d} \varphi_{p}\left(\epsilon_{i}\right)=\frac{\partial \hat{\varphi}}{\partial u_{i}}(\mathbf{0}) \quad(i=1, \ldots, m) .
$$

Deduce that, if $\mathbf{v} \in T_{p} M$ is given by $\mathbf{v}=\sum_{i=1}^{m} v_{i} \epsilon_{i}$, then

$$
\mathrm{d} \varphi_{p}(\mathbf{v})=\sum_{i=1}^{m} v_{i} \mathrm{~d} \varphi_{p}\left(\epsilon_{i}\right) .
$$

(b) Let $f: M \rightarrow M^{\prime}$ be a smooth map between surfaces. Define what is meant by f is a local isometry.

Show that, if f is a local isometry then,
${ }^{(*)}$ for any smooth curve $\alpha:[a, b] \rightarrow M$ defined on a closed interval $[a, b]$, the length of $f \circ \alpha$ is equal to the length of α.

Show conversely that, if $f: M \rightarrow M^{\prime}$ is a smooth map having the property $\left(^{*}\right)$, then it is a local isometry.
3. (a) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the smooth function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{2}^{2}$. For $r>0$, set $S^{2}(r)=f^{-1}(r)$. Show that f is regular on $S^{2}(r)$, so that $S^{2}(r)$ is a 2 -surface. Without parametrizing $S^{2}(r)$, show that its shape operator S at any point $p \in S^{2}(r)$ is given by

$$
S(\mathbf{v})=c \mathbf{v} \quad\left(\mathbf{v} \in T_{p} S^{2}(r)\right)
$$

for some constant c to be determined.
(b) Let M be a surface and let $\gamma: I \rightarrow M$ be a smooth curve defined on an interval I. Say what is meant by γ is a geodesic on M. Show that the speed $\left|\gamma^{\prime}(t)\right| \quad(t \in I)$ of a geodesic is constant.
(c) Suppose that $\gamma: I \rightarrow S^{2}(r)$ is a geodesic of unit speed. Show that it is a plane curve of constant curvature $1 / r$; deduce that its track lies on a great circle of $S^{2}(r)$.

Suppose, instead, that $\gamma: I \rightarrow S^{2}(r)$ is a smooth curve of unit speed whose principal normal makes a constant angle with a unit normal of $S^{2}(r)$. Show that the track of γ lies on a circle and give the radius of that circle.
[You may assume that the track of a unit speed plane curve of constant curvature $1 / r$ lies on a circle of radius r.]
4. (a) Let $f: M \rightarrow M^{\prime}$ be a smooth map between 2 -surfaces. Say what is meant by f is conformal with scale factor λ. Show that a smooth map $f: M \rightarrow M^{\prime}$ is conformal with scale factor λ if and only if

$$
\mathrm{d} f_{p}(\mathbf{v}) \cdot \mathrm{d} f_{p}(\mathbf{w})=\lambda(p)^{2} \mathbf{v} \cdot \mathbf{w} \quad\left(p \in M, \mathbf{v}, \mathbf{w} \in T_{p} M\right) .
$$

Give a formula for the angle between two non-zero vectors, and show that a smooth map $f: M \rightarrow M^{\prime}$ is conformal if and only if it preserves angles in the sense that, for all $p \in M$ and all non-zero $\mathbf{v}, \mathbf{w} \in T_{p} M$, the vectors $\mathrm{d} f_{p}(\mathbf{v})$ and $\mathrm{d} f_{p}(\mathbf{w})$ are non-zero and the angle between them is equal to the angle between \mathbf{v} and \mathbf{w}.
(b) Let $S^{2}=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1\right\}$ and

$$
E^{2}=\left\{(x, y, z): \frac{x^{2}+y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1\right\}
$$

where a and b are positive constants. Define a smooth map $f: S^{2} \rightarrow E^{2}$ by

$$
f(x, y, z)=(a x, a y, b z) .
$$

Show that f is conformal if and only if $a=b$. Determine the scale factor of f in this case.
5. (a) Give a formula which defines a local isometry from the plane \mathbb{R}^{2} to the unit circular cylinder $C=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\}$. [You need not show that this is a local isometry.]
(b) Let M be a 2-surface in \mathbb{R}^{3}. What is meant by saying that a property is (A) intrinsic, (B) extrinsic. Show that the following properties are extrinsic: (i) principal curvatures; (ii) mean curvature; (iii) distance between pairs of points [You may quote the values of the principal curvatures of \mathbb{R}^{2} in \mathbb{R}^{3} and of C in \mathbb{R}^{3} without proof.] State the Theorema Egregium of Gauss.
(c) Let M be a closed 2-surface. Explain briefly what is meant by the (i) total curvature of M, (ii) Euler characteristic of M. [You need not define what is meant by a triangulation or show that the Euler characteristic is well defined.] State the Gauss-Bonnet Theorem.

Let M be a closed 2-surface with Euler characteristic 0 and Gauss curvature K satisfying $K \leq 0$ at all points. Show that K is identically zero.

SECTION B

6. (a) Prove that, for any nonnegative real numbers a and b,

$$
\sqrt{a b} \leq \frac{1}{2}(a+b) .
$$

Prove that, for any four real numbers $a_{1}, a_{2}, b_{1}, b_{2}$,

$$
\left(\sum_{i=1}^{2} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{2} a_{i}^{2}\right)\left(\sum_{i=1}^{2} b_{i}^{2}\right) .
$$

(b) Let $C: s \mapsto \mathbf{x}(s)=\left(x_{1}(s), x_{2}(s)\right)(s \in[0, L])$ be a positively oriented unit speed simple closed curve in the plane of length L which encloses an area A. Describe how to construct a circle $\bar{C}: s \mapsto \overline{\mathbf{x}}(s)=\left(\bar{x}_{1}(s), \bar{x}_{2}(s)\right) \quad(s \in[0, L])$ with $\bar{x}_{1}(s)=x_{1}(s) \quad(s \in[0, L])$. Show that

$$
A+\pi r^{2} \leq L r
$$

where r is the radius of the circle. Deduce the isoperimetric inequality:

$$
4 \pi A \leq L^{2}
$$

7. Let M be a 2-surface in \mathbb{R}^{3} and let $X: U \rightarrow M,(u, v) \mapsto X(u, v)$ be a local parametrization of M. As usual, write $\epsilon_{1}=\partial X / \partial u$ and $\epsilon_{2}=\partial X / \partial v, E=\epsilon_{1} \cdot \epsilon_{1}, F=\epsilon_{1} \cdot \epsilon_{2}=\epsilon_{2} \cdot \epsilon_{1}, G=\epsilon_{2} \cdot \epsilon_{2}$, $L=S\left(\epsilon_{1}\right) \cdot \epsilon_{1}, M=S\left(\epsilon_{1}\right) \cdot \epsilon_{2}=S\left(\epsilon_{2}\right) \cdot \epsilon_{1}, N=S\left(\epsilon_{2}\right) \cdot \epsilon_{2}$, where S is the shape operator of M at p.
(a) Show that the Gauss curvature K of M at a point in the image of X is given by

$$
K=\frac{L N-M^{2}}{E G-F^{2}} .
$$

(b) Write

$$
\begin{aligned}
X_{u u} & =\Gamma_{11}^{1} X_{u}+\Gamma_{11}^{2} X_{v}+L \mathbf{N} \\
X_{u v} & =\Gamma_{12}^{1} X_{u}+\Gamma_{12}^{2} X_{v}+M \mathbf{N} \\
X_{v u} & =\Gamma_{21}^{1} X_{u}+\Gamma_{21}^{2} X_{v}+M \mathbf{N} \\
X_{v v} & =\Gamma_{22}^{1} X_{u}+\Gamma_{22}^{2} X_{v}+N \mathbf{N}
\end{aligned}
$$

Suppose that F is identically zero. Show that

$$
\Gamma_{11}^{1}=\frac{1}{2} \frac{E_{u}}{E}
$$

and find similar formulae for the other $\Gamma_{i j}^{k}(i, j, k=1,2)$.
Show that $L N-M^{2}$ is expressible in terms of these functions and E, G and their derivatives. Deduce that the Gauss curvature K is expressible in terms of E, G and their derivatives. [You need not find the exact expression for $L N-M^{2}$ or for K.]
8. (a) Let M be a surface. Define what is meant by a (smooth) Riemannian metric on M.
(b) Let $\mathbb{R}_{+}^{2}=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ and let g be the hyperbolic metric on \mathbb{R}_{+}^{2} given at a point $p=(x, y)$ of \mathbb{R}_{+}^{2} by

$$
g_{p}(\mathbf{v}, \mathbf{w})=\frac{1}{y^{2}} \mathbf{v} \cdot \mathbf{w}
$$

Show that the following bijective smooth maps of $\left(\mathbb{R}_{+}^{2}, g\right)$ are isometries:

$$
\begin{aligned}
\text { (i) } & \psi(x, y) \\
\text { (ii) } & \psi(x, y) \\
\text { (iii) } & =(\lambda x, \lambda y) \quad(\lambda \in \mathbb{R}) \\
\text { (ii) } & =(-x, y) \\
\text { (iv) } \psi(x, y) & =\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right) .
\end{aligned}
$$

[You do not need to show that these maps are smooth and bijective, and you may assume that a smooth bijective map $\psi: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}^{2}$ is an isometry if and only if, for each $p \in \mathbb{R}_{+}^{2}$, there is a basis $\left\{e_{1}, e_{2}\right\}$ of $T_{p} \mathbb{R}_{+}^{2}$ such that $\left.g_{\psi(p)}\left(\mathrm{d} \psi_{p}\left(e_{i}\right), \mathrm{d} \psi_{p}\left(e_{j}\right)\right)=g_{p}\left(e_{i}, e_{j}\right) \quad(i=1,2).\right]$
(c) Find an isometry of $\left(\mathbb{R}_{+}^{2}, g\right)$ which preserves the semicircle of centre $(0,0)$, radius 3 , but is not the identity map. Hence find $a \in(0, \infty)$ such that the distance from $(0,1)$ to $(0,2)$ is equal to the distance of $(0, a)$ to $(0,9)$ without calculating these distances.

END

