
MATH–5031M01

MATH–5031M01

This question paper consists of 5 printed
pages, each of which is identified by the
reference MATH–5031M01

Only approved basic scientific
calculators may be used.

c© UNIVERSITY OF LEEDS

Examination for the Module MATH–5031M

(January 2005)

Differential Geometry 2

Time allowed: 3 hours

Answer a maximum of four questions from Section A and a maximum of two questions
from Section B. All questions carry equal marks.

SECTION A

Throughout Section A, by ‘surface’ we shall mean ‘smooth regular embedded m-surface in
R
n for some positive integers m and n’.

1. (a) Let γ : [0, b] → R
2 be a smooth unit speed parametrized curve. (i) What is meant by

γ is closed? (ii) Define the signed curvature κ(s) of γ at s ∈ [0, b].

Let θ : [0, b] → R be a smooth function such that γ′(s) =
(
cos θ(s), sin θ(s)

) (
s ∈ [0, b]

)
.

Show that κ(s) = θ′(s)
(
s ∈ [0, b]

)
.

Hence show that the total curvature
∫ b

0
κ(s) ds of γ is given by θ(b) − θ(0), and define the

rotation index of γ [you need not show that it is an integer].

(b) Let γ(t) = (6 cos 2t,−6 sin 2t)
(
t ∈ [0, 3π]

)
. Calculate the total curvature of γ and

thus its rotation index.

(c) By using part (b) and finding a suitable regular homotopy or otherwise, show that the
rotation index of the closed curve α : [0, 3π]→ R

2 given by

α(t) =
(
6 cos 2t+ 2 sin 4t , −6 sin 2t+ 2 cos 4t

) (
t ∈ [0, 3π]

)
is −3.
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2. (a) Let f : W → R
k be a smooth map from an open subset of Rn to Rk where n and k are

positive integers with k ≤ n. Say what is meant by p ∈ W is a regular point. Let c ∈ f(W ).
State a condition on c which ensures that f−1(c) is a (smooth regular embedded) m-surface
in Rn for some m, giving the value of m in terms of n and k.

Hence show that Sc =
{

(x, y, z) ∈ R3 : x2 + y2 − z2 = c
}

is a smooth 2-surface if c 6= 0.

By calculating the shape operator or otherwise, show that the surface S1 has Gauss curvature
−1 at the point (1, 0, 0).

(b) For any c ∈ R, let Mc =
{

(x1, x2, x3, x4) ∈ R4 : x 2
1 + x 2

2 + x 2
3 + x 2

4 = 1, x1 + x3 = c
}

.

Show that Mc is empty if |c| >
√

2 and is a nonempty (smooth regular embedded) 2-surface
in R4 if |c| <

√
2 .

3. (a) Let f : M → M ′ be a smooth map between surfaces, and let p ∈ M . Define the
differential dfp : TpM → Tf(p)M

′ of f at p . Let g : M ′ → M ′′ be another smooth map
between surfaces and let p ∈M . Show that d(g ◦ f)p = dgf(p) ◦ dfp .

(b) Let f : M → M ′ be a smooth map between surfaces. Define what is meant by f is a
local isometry. Let C be the cylinder

{
(x, y, z) ∈ R3 : x2 + y2 = 1

}
. Show that the map

f : R2 → C defined by f(u1 , u2) = (cosu1 , sinu1 , u2) is a local isometry.

Let S be the cone
{

(x, y, z) ∈ R
3 : a2x2 + a2y2 = z2

}
where a > 0. Define a map

f : R2 \ {(0, 0)} → S by f(r cos θ, r sin θ) = (br cos 2θ, br sin 2θ, abr) where b > 0. Show
that f is a local isometry if and only if a =

√
3 and b = 1/2 .

[You may use the fact that a smooth map f : M →M ′ is a local isometry if and only if, for
each p ∈M , there is an orthonormal basis {ei} such that {dfp(ei)} is orthonormal.]
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4. (a) Let f : M → M ′ be a smooth map between 2-surfaces. Say what is meant by f is
conformal with scale factor λ. Show that a smooth map f : M → M ′ is conformal with
scale factor λ if and only if

dfp(v) · dfp(w) = λ(p)2 v ·w (p ∈M, v,w ∈ TpM) .

Hence show that a smooth map f : M →M ′ is conformal with scale factor λ if and only if,
for all p ∈M , there exists a basis {v1,v2} of TpM such that |dfp(vi)| = λ(p) |vi| (i = 1, 2)
and dfp(v1) · dfp(v2) = λ(p)2 v1 · v2 .

(b) Let φ : R2 \ {(0, 0)} → R
2 \ {(0, 0)} be defined by

φ(x, y) =
1

(x2 + y2)k
(x, y)

where k is a positive constant. Show that φ is conformal if and only if k = 1. Determine
the scale factor of φ in this case.

5. (a) Let f : M → M ′ be a local isometry between surfaces and let α : I → M be a smooth
curve. Show that the length of α is equal to the length of f ◦ α.

(b) Let M be a 2-surface in R3. What is meant by a property is (A) intrinsic, (B) extrinsic.
For each of the following properties of M , state which is intrinsic and which is extrinsic,
giving a brief reason: (i) principal curvatures; (ii) mean curvature; (iii) length of curves; (iv)
Gauss curvature. [You may quote values of the principal curvatures of standard surfaces
and the existence of local isometries between some of these surfaces without proof.]

(c) Let M be a closed 2-surface. Explain briefly what is meant by the (i) total curvature,
(ii) the Euler characteristic of M [you need not define what is meant by a triangulation or
show that the Euler characteristic is well defined].

State the Gauss–Bonnet Theorem.

Use the Gauss–Bonnet Theorem to determine (i) the total curvature of the surface

M =
{

(x, y, z) ∈ R3 : x2 +
1

3
y2 + 2z2 = 1

}
,

(ii) the Euler characteristic of a closed surface whose total curvature is −4π.
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SECTION B

6. (a) Let α : I → R
3 be a unit speed smooth closed curve. Define its tangential map

f : I → S2 to the unit sphere S2 by f(s) = α′(s) (s ∈ I) and let Γ denote its image. Show
that (i) for any s ∈ I, the unsigned curvature κ(s) of α at s is equal to the speed of f at s;
(ii) the total curvature

∫
I
|κ(s)| ds of α is equal to the length of Γ (i.e., of f).

Now let a be a fixed unit vector. Define a function g : I → R by g(s) = a ·α(s). Show that,
if s ∈ I is a point where g attains a maximum or minimum, then a · f(s) = 0. Deduce that
(i) Γ is met by every great circle of S2, (ii) the length of Γ is at least 2π. Hence show that
the total curvature of α is at least 2π.

[You may assume that, if Γ is a smooth closed curve in S2 of length less than 2π, then there
is a point m ∈ S2 such that the spherical distance of m from x is less than π/2 for all points
x ∈ Γ.]

(b) Suppose now that α : I → R
3 is a nontrivial knot. Can its total curvature be 3π?

Explain your answer briefly.

7. Let M be an m-surface in Rn. Let α : [a, b] → M be a smooth curve on M (which is not
necessarily of unit speed or regular). Set

E(α) =
1

2

∫ b

a

|α′(t)|2 dt .

(i) Find the first variation formula for E.

(ii) Show that, if α is a geodesic, then E is stationary with respect to variations which fix
the endpoints.

(iii) Show the converse, i.e., if E is stationary with respect to variations which fix the
endpoints, then α is a geodesic. [You may assume that (i) for any closed interval [a, b]
and any t0 ∈ [a, b], there are a1, b1 with a < a1 < t0 < b1 < b and a smooth function
f : [a, b] → [0,∞) with f(t0) > 0 and f(t) = 0 for all t 6∈ [a1, b1]; (ii) given a vector field v
along α, there is a variation of α with variation vector field v.]

(iv) A variation of α is called normal if its variation vector field v satisfies v(s) · α(s) = 0
(s ∈ I) (the variation need not fix the endpoints). How must your proofs in parts (ii) and
(iii) be modified to show that α is a geodesic if and only if E is stationary with respect to
normal variations?
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8. (a) Let M and M ′ be 2-surfaces in R3 and let f : M → M ′ be a smooth map. What is
meant by saying that f is equiareal. Show that f is equiareal if and only if, for each p ∈M ,
there is a basis {v1,v2} of TpM such that

|dfp(v1)× dfp(v2)| = |v1 × v2| .

(b) Define a map f from the unit circular cylinder to the unit sphere by

f(cos t, sin t, u) =
(√

1− g(u)2 cos t,
√

1− g(u)2 sin t, g(u)
)

where g is a smooth real-valued function with g(0) = 0 and g′(u) > 0 for all u. Show that
f is equiareal if and only if g(u) = u.

(c) Show that, if a smooth map between 2-surfaces is both conformal and equiareal, then
it is a local isometry.

Hence, show, without any calculation, that stereographic projection is not equiareal.

[You may assume standard properties of conformal maps and that stereographic projection
is conformal, and standard consequences of the Theorema Egregium.]
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