MATH-5031M01

This question paper consists of 5 printed pages, each of which is identified by the reference MATH-5031M01

Only approved basic scientific calculators may be used.
© UNIVERSITY OF LEEDS
Examination for the Module MATH-5031M
(January 2005)

Differential Geometry 2

Time allowed: 3 hours

Answer a maximum of four questions from Section A and a maximum of two questions from Section B. All questions carry equal marks.

SECTION A

Throughout Section A, by 'surface' we shall mean 'smooth regular embedded m-surface in \mathbb{R}^{n} for some positive integers m and n.

1. (a) Let $\gamma:[0, b] \rightarrow \mathbb{R}^{2}$ be a smooth unit speed parametrized curve. (i) What is meant by γ is closed? (ii) Define the signed curvature $\kappa(s)$ of γ at $s \in[0, b]$.

Let $\theta:[0, b] \rightarrow \mathbb{R}$ be a smooth function such that $\gamma^{\prime}(s)=(\cos \theta(s), \sin \theta(s)) \quad(s \in[0, b])$. Show that $\kappa(s)=\theta^{\prime}(s) \quad(s \in[0, b])$.

Hence show that the total curvature $\int_{0}^{b} \kappa(s) \mathrm{d} s$ of γ is given by $\theta(b)-\theta(0)$, and define the rotation index of γ [you need not show that it is an integer].
(b) Let $\gamma(t)=(6 \cos 2 t,-6 \sin 2 t) \quad(t \in[0,3 \pi])$. Calculate the total curvature of γ and thus its rotation index.
(c) By using part (b) and finding a suitable regular homotopy or otherwise, show that the rotation index of the closed curve $\alpha:[0,3 \pi] \rightarrow \mathbb{R}^{2}$ given by

$$
\alpha(t)=(6 \cos 2 t+2 \sin 4 t,-6 \sin 2 t+2 \cos 4 t) \quad(t \in[0,3 \pi])
$$

is -3 .
2. (a) Let $f: W \rightarrow \mathbb{R}^{k}$ be a smooth map from an open subset of \mathbb{R}^{n} to \mathbb{R}^{k} where n and k are positive integers with $k \leq n$. Say what is meant by $p \in W$ is a regular point. Let $c \in f(W)$. State a condition on c which ensures that $f^{-1}(c)$ is a (smooth regular embedded) m-surface in \mathbb{R}^{n} for some m, giving the value of m in terms of n and k.

Hence show that $S_{c}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}-z^{2}=c\right\}$ is a smooth 2-surface if $c \neq 0$.
By calculating the shape operator or otherwise, show that the surface S_{1} has Gauss curvature -1 at the point $(1,0,0)$.
(b) For any $c \in \mathbb{R}$, let $M_{c}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1, x_{1}+x_{3}=c\right\}$. Show that M_{c} is empty if $|c|>\sqrt{2}$ and is a nonempty (smooth regular embedded) 2-surface in \mathbb{R}^{4} if $|c|<\sqrt{2}$.
3. (a) Let $f: M \rightarrow M^{\prime}$ be a smooth map between surfaces, and let $p \in M$. Define the differential $\mathrm{d} f_{p}: T_{p} M \rightarrow T_{f(p)} M^{\prime}$ of f at p. Let $g: M^{\prime} \rightarrow M^{\prime \prime}$ be another smooth map between surfaces and let $p \in M$. Show that $\mathrm{d}(g \circ f)_{p}=\mathrm{d} g_{f(p)} \circ \mathrm{d} f_{p}$.
(b) Let $f: M \rightarrow M^{\prime}$ be a smooth map between surfaces. Define what is meant by f is a local isometry. Let C be the cylinder $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\}$. Show that the map $f: \mathbb{R}^{2} \rightarrow C$ defined by $f\left(u_{1}, u_{2}\right)=\left(\cos u_{1}, \sin u_{1}, u_{2}\right)$ is a local isometry.

Let S be the cone $\left\{(x, y, z) \in \mathbb{R}^{3}: a^{2} x^{2}+a^{2} y^{2}=z^{2}\right\}$ where $a>0$. Define a map $f: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow S$ by $f(r \cos \theta, r \sin \theta)=(b r \cos 2 \theta, b r \sin 2 \theta, a b r)$ where $b>0$. Show that f is a local isometry if and only if $a=\sqrt{3}$ and $b=1 / 2$.
[You may use the fact that a smooth map $f: M \rightarrow M^{\prime}$ is a local isometry if and only if, for each $p \in M$, there is an orthonormal basis $\left\{\mathbf{e}_{i}\right\}$ such that $\left\{\mathrm{d} f_{p}\left(\mathbf{e}_{i}\right)\right\}$ is orthonormal.]
4. (a) Let $f: M \rightarrow M^{\prime}$ be a smooth map between 2 -surfaces. Say what is meant by f is conformal with scale factor λ. Show that a smooth map $f: M \rightarrow M^{\prime}$ is conformal with scale factor λ if and only if

$$
\mathrm{d} f_{p}(\mathbf{v}) \cdot \mathrm{d} f_{p}(\mathbf{w})=\lambda(p)^{2} \mathbf{v} \cdot \mathbf{w} \quad\left(p \in M, \mathbf{v}, \mathbf{w} \in T_{p} M\right) .
$$

Hence show that a smooth map $f: M \rightarrow M^{\prime}$ is conformal with scale factor λ if and only if, for all $p \in M$, there exists a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ of $T_{p} M$ such that $\left|\mathrm{d} f_{p}\left(\mathbf{v}_{i}\right)\right|=\lambda(p)\left|\mathbf{v}_{i}\right| \quad(i=1,2)$ and $\mathrm{d} f_{p}\left(\mathbf{v}_{1}\right) \cdot \mathrm{d} f_{p}\left(\mathbf{v}_{2}\right)=\lambda(p)^{2} \mathbf{v}_{1} \cdot \mathbf{v}_{2}$.
(b) Let $\phi: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2} \backslash\{(0,0)\}$ be defined by

$$
\phi(x, y)=\frac{1}{\left(x^{2}+y^{2}\right)^{k}}(x, y)
$$

where k is a positive constant. Show that ϕ is conformal if and only if $k=1$. Determine the scale factor of ϕ in this case.
5. (a) Let $f: M \rightarrow M^{\prime}$ be a local isometry between surfaces and let $\alpha: I \rightarrow M$ be a smooth curve. Show that the length of α is equal to the length of $f \circ \alpha$.
(b) Let M be a 2-surface in \mathbb{R}^{3}. What is meant by a property is (A) intrinsic, (B) extrinsic. For each of the following properties of M, state which is intrinsic and which is extrinsic, giving a brief reason: (i) principal curvatures; (ii) mean curvature; (iii) length of curves; (iv) Gauss curvature. [You may quote values of the principal curvatures of standard surfaces and the existence of local isometries between some of these surfaces without proof.]
(c) Let M be a closed 2-surface. Explain briefly what is meant by the (i) total curvature, (ii) the Euler characteristic of M [you need not define what is meant by a triangulation or show that the Euler characteristic is well defined].

State the Gauss-Bonnet Theorem.
Use the Gauss-Bonnet Theorem to determine (i) the total curvature of the surface

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+\frac{1}{3} y^{2}+2 z^{2}=1\right\}
$$

(ii) the Euler characteristic of a closed surface whose total curvature is -4π.

SECTION B

6. (a) Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a unit speed smooth closed curve. Define its tangential map $f: I \rightarrow S^{2}$ to the unit sphere S^{2} by $f(s)=\alpha^{\prime}(s)(s \in I)$ and let Γ denote its image. Show that (i) for any $s \in I$, the unsigned curvature $\kappa(s)$ of α at s is equal to the speed of f at s; (ii) the total curvature $\int_{I}|\kappa(s)| \mathrm{d} s$ of α is equal to the length of Γ (i.e., of f).

Now let a be a fixed unit vector. Define a function $g: I \rightarrow \mathbb{R}$ by $g(s)=\mathbf{a} \cdot \alpha(s)$. Show that, if $s \in I$ is a point where g attains a maximum or minimum, then $\mathbf{a} \cdot f(s)=0$. Deduce that (i) Γ is met by every great circle of S^{2}, (ii) the length of Γ is at least 2π. Hence show that the total curvature of α is at least 2π.
[You may assume that, if Γ is a smooth closed curve in S^{2} of length less than 2π, then there is a point $m \in S^{2}$ such that the spherical distance of m from x is less than $\pi / 2$ for all points $x \in \Gamma$.]
(b) Suppose now that $\alpha: I \rightarrow \mathbb{R}^{3}$ is a nontrivial knot. Can its total curvature be 3π ? Explain your answer briefly.
7. Let M be an m-surface in \mathbb{R}^{n}. Let $\alpha:[a, b] \rightarrow M$ be a smooth curve on M (which is not necessarily of unit speed or regular). Set

$$
E(\alpha)=\frac{1}{2} \int_{a}^{b}\left|\alpha^{\prime}(t)\right|^{2} \mathrm{~d} t
$$

(i) Find the first variation formula for E.
(ii) Show that, if α is a geodesic, then E is stationary with respect to variations which fix the endpoints.
(iii) Show the converse, i.e., if E is stationary with respect to variations which fix the endpoints, then α is a geodesic. [You may assume that (i) for any closed interval $[a, b]$ and any $t_{0} \in[a, b]$, there are a_{1}, b_{1} with $a<a_{1}<t_{0}<b_{1}<b$ and a smooth function $f:[a, b] \rightarrow[0, \infty)$ with $f\left(t_{0}\right)>0$ and $f(t)=0$ for all $t \notin\left[a_{1}, b_{1}\right]$; (ii) given a vector field v along α, there is a variation of α with variation vector field v.]
(iv) A variation of α is called normal if its variation vector field v satisfies $v(s) \cdot \alpha(s)=0$ $(s \in I)$ (the variation need not fix the endpoints). How must your proofs in parts (ii) and (iii) be modified to show that α is a geodesic if and only if E is stationary with respect to normal variations?
8. (a) Let M and M^{\prime} be 2-surfaces in \mathbb{R}^{3} and let $f: M \rightarrow M^{\prime}$ be a smooth map. What is meant by saying that f is equiareal. Show that f is equiareal if and only if, for each $p \in M$, there is a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ of $T_{p} M$ such that

$$
\left|\mathrm{d} f_{p}\left(\mathbf{v}_{1}\right) \times \mathrm{d} f_{p}\left(\mathbf{v}_{2}\right)\right|=\left|\mathbf{v}_{1} \times \mathbf{v}_{2}\right| .
$$

(b) Define a map f from the unit circular cylinder to the unit sphere by

$$
f(\cos t, \sin t, u)=\left(\sqrt{1-g(u)^{2}} \cos t, \sqrt{1-g(u)^{2}} \sin t, g(u)\right)
$$

where g is a smooth real-valued function with $g(0)=0$ and $g^{\prime}(u)>0$ for all u. Show that f is equiareal if and only if $g(u)=u$.
(c) Show that, if a smooth map between 2-surfaces is both conformal and equiareal, then it is a local isometry.

Hence, show, without any calculation, that stereographic projection is not equiareal.
[You may assume standard properties of conformal maps and that stereographic projection is conformal, and standard consequences of the Theorema Egregium.]

END

