MATH445001

(C) UNIVERSITY OF LEEDS

 Examination for the Module MATH4450(June 2004)

Polymeric Fluids

Time allowed: $\mathbf{3}$ hours

Answer FIVE of the SEVEN questions.
All questions carry equal marks.

1. (a) The shear stress, σ, in a Bingham plastic material is related to the shear-rate $\dot{\gamma}$ by

$$
\mu \dot{\gamma}= \begin{cases}\sigma-\sigma_{y}, & \sigma>\sigma_{y} \\ 0, & |\sigma| \leq \sigma_{y} \\ \sigma+\sigma_{y}, & \sigma<-\sigma_{y}\end{cases}
$$

where σ_{y} and μ are positive constants. Explain the physical significance of σ_{y} and sketch a graph of σ versus $\dot{\gamma}$.
(b) A cylindrical pipe of radius a is filled with fluid of density ρ and mounted with its axis vertical. Write down the equation for vertical momentum conservation on the assumption that inertia can be neglected and the extra stress, σ, is a function of r only. If the top and bottom of the pipe are open to the atmosphere and z is measured downwards show the shear stress, $\sigma_{r z}$, in the pipe satisfies

$$
\frac{1}{r} \frac{d}{d r}\left(r \sigma_{r z}\right)=-\rho g
$$

Find the shear stress, $\sigma_{r z}$.
(c) If the fluid in the pipe is a Bingham plastic, show that there will be no flow if $\sigma_{y}>\frac{1}{2} \rho g a$. Find the position of the yield surface when $\sigma_{y}<\frac{1}{2} \rho g a$. Find the form of the fluid velocity, w for $\sigma_{y}=\frac{1}{4} \rho g a$ and sketch a graph showing $w(r)$. Calculate the volume flow, $Q=2 \pi \int_{0}^{a} r w d r$ down the pipe for this case.
2. (a) Using the appropriate formulae for cylindrical polar coordinates write down the velocity gradient for a flow in which the fluid velocity is given in cylindrical polar coordinates (r, θ, z) by $\mathbf{u}=(0, v(r), 0)$. Show that the $r \theta$ component of the strain-rate tensor, \mathbf{E},

$$
E_{r \theta}=\frac{1}{2} \dot{\gamma}=\frac{r}{2} \frac{d}{d r}\left(\frac{v}{r}\right)
$$

where $\dot{\gamma}$ is the local shear-rate. Define the shear viscosity, $\mu(\dot{\gamma})$, and first and second normal stress differences, $N_{1}(\dot{\gamma})$ and $N_{2}(\dot{\gamma})$, in terms of the components of the extra stress tensor σ.
(b) Write down the components of the momentum equation for such a flow on the assumption that fluid inertia is negligible and the gravitational acceleration, $\mathbf{g}=(0,0,-g)$. (You may assume that $\sigma_{r z}=\sigma_{\theta z}=0$). Show that this leads to the following equations

$$
\begin{aligned}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \mu(\dot{\gamma}) \dot{\gamma}\right) & =0, \\
\frac{\partial}{\partial r}\left(-p+\sigma_{z z}+N_{2}\right) & =\frac{N_{1}}{r}, \\
\frac{\partial}{\partial z}\left(-p+\sigma_{z z}\right) & =\rho g
\end{aligned}
$$

(c) A vertical rod of radius a rotates at angular velocity $\Omega>0$ in a polymeric fluid in which

$$
\mu(\dot{\gamma})=\mu_{0}, \quad N_{1}(\dot{\gamma})=A|\dot{\gamma}|, \quad N_{2}(\dot{\gamma})=0
$$

where μ_{0} and A are both positive constants. Find the fluid velocity $v(r)$ and show that

$$
\dot{\gamma}=-\frac{2 \Omega a^{2}}{r^{2}}
$$

If the top surface is open to the atmosphere, show that the position of this surface is given by

$$
h(r)=h_{\infty}+\frac{A \Omega a^{2}}{\rho g r^{2}}
$$

where h_{∞} is the height for $r \rightarrow \infty$.
3. (a) Write down the expression for the extra stress in a linear viscoelastic fluid of relaxation modulus $G(t)$. Explain how $G(t)$ can be measured directly from a step-strain experiment.
(b) The extra stress σ in the linear Maxwell model is related to the strain-rate by

$$
\tau \frac{\partial \boldsymbol{\sigma}}{\partial t}+\boldsymbol{\sigma}=2 \mu \mathbf{E}(t)
$$

Calculate the relaxation modulus $G(t)$ and show that

$$
\int_{0}^{\infty} G(t) d t=\mu
$$

Sketch a graph of $G(t)$ and hence explain the significance of the parameter τ.
(c) Find the shear stress $\sigma_{x y}(t)$ generated by the fluid velocity $\mathbf{u}=(\dot{\gamma} y, 0,0)$ in the following cases:
(i) $\dot{\gamma}= \begin{cases}0 & t<0, \\ \dot{\gamma}_{0} & t \geq 0 .\end{cases}$
(ii) $\dot{\gamma}= \begin{cases}0 & t<0, \\ \frac{\gamma_{0}}{T} & 0 \leq t \leq T, \\ 0 & t>T .\end{cases}$

For each case sketch graphs of $\sigma_{x y}$ and $\dot{\gamma}$ as functions of time. In case (ii) show that for $T \ll \tau$ the shear stress is approximately equal to $\gamma_{0} G(t)$.
4. The expression for the total stress in a rubber is

$$
\boldsymbol{\tau}=G \mathbf{F} \cdot \mathbf{F}^{T}-\beta \mathbf{I} .
$$

A rectangular piece of rubber, of initial length L_{x}, width L_{y} and thickness L_{z} is deformed by means of clamps holding the edges, so that its new length is λL_{x}, its width remains L_{y} but it is subjected to a shear strain γ as shown in the diagram below.

(a) Assuming the volume of the rubber is conserved, what is the new thickness, L_{z}^{\prime} of the rubber in the deformed shape?
(b) By considering the effect of the deformation on unit vectors in the x, y and z directions (or otherwise), determine the deformation gradient tensor, \mathbf{F}, for this deformation.
(c) Obtain the total stress, $\boldsymbol{\tau}$, in the rubber, and use the condition $\tau_{z z}=0$ to determine the value of β.
(d) The total force on an area A with unit normal \mathbf{n} is $\mathbf{f}=A \boldsymbol{\tau} \cdot \mathbf{n}$. Show that the edge labeled " 1 " in the diagram has area A_{1} and unit normal \mathbf{n}_{1} given by

$$
\begin{aligned}
& A_{1}=\frac{\sqrt{1+\gamma^{2}}}{\lambda} L_{y} L_{z} \\
& \mathbf{n}_{1}=\frac{1}{\sqrt{1+\gamma^{2}}}\left(\begin{array}{c}
1 \\
-\gamma \\
0
\end{array}\right)
\end{aligned}
$$

and hence determine the vector force required to clamp the rubber along edge 1 . Similarly, determine the vector force required to clamp the rubber along the edge labeled " 2 ".
5. The Langevin equation for a particle moving with friction constant ζ in a quadratic potential $U=\frac{1}{2} k x^{2}$ is

$$
\zeta \frac{d x}{d t}=-k x+f(t)
$$

where $\left\langle f(t) f\left(t^{\prime}\right)\right\rangle=2 k_{\mathrm{B}} T \zeta \delta\left(t-t^{\prime}\right)$ where $k_{\mathrm{B}} T$ is the thermal energy.
(a) Show that the solution of this equation, subject to initial condition $x(0)=0$, is

$$
x(t)=\frac{1}{\zeta} \int_{0}^{t} d t^{\prime} f\left(t^{\prime}\right) \exp \left(\frac{t^{\prime}-t}{\tau}\right)
$$

where $\tau=\frac{\zeta}{k}$.
(b) Hence show that

$$
\left\langle x(t)^{2}\right\rangle=\frac{k_{\mathrm{B}} T}{k}\left(1-\exp \left(-\frac{2 t}{\tau}\right)\right)
$$

(c) (i) Obtain the limiting form of $\left\langle x(t)^{2}\right\rangle$ for $t \ll \tau$ and compare your result with freeparticle diffusion (where $\left\langle x(t)^{2}\right\rangle=2 D t$).
(ii) Obtain the limiting form of $\left\langle x(t)^{2}\right\rangle$ for $t \gg \tau$. In this limit, show that the average energy $\langle U\rangle$ approaches $\frac{1}{2} k_{\mathrm{B}} T$.
6. The Zimm model for polymer solutions has a time-dependent modulus of form

$$
G(t)=G_{0} \sum_{p=1}^{\infty} \exp \left(-\frac{p^{\frac{3}{2}} t}{\tau_{z}}\right)
$$

(a) Obtain the viscosity, $\mu=\int_{0}^{\infty} G(s) d s$, and recoil after steady shear $R=\dot{\gamma} \int_{0}^{\infty} s G(s) d s / \int_{0}^{\infty} G(s) d s$.
(b) Use $G^{*}=G^{\prime}+i G^{\prime \prime}=\int_{0}^{\infty} i \omega G(s) \exp (-i \omega s) d s$ to show that

$$
\begin{aligned}
G^{\prime} & =G_{0} \sum_{p=1}^{\infty} \frac{\omega^{2} \tau_{z}^{2}}{p^{3}+\omega^{2} \tau_{z}^{2}} \\
G^{\prime \prime} & =G_{0} \sum_{p=1}^{\infty} \frac{p^{\frac{3}{2}} \omega \tau_{z}}{p^{3}+\omega^{2} \tau_{z}^{2}}
\end{aligned}
$$

Show that $G^{\prime \prime}=\mu \omega$ for $\omega \ll \tau_{z}^{-1}$. By approximating the sum as an integral, find an approximation of form $G^{\prime \prime}=c \omega^{\alpha}$ for $\omega \gg \tau_{z}^{-1}$. Hence sketch a graph of $\log G^{\prime \prime}$ versus $\log \omega$.

You may use the results $\sum_{1}^{\infty} p^{-3} \approx 1.202, \sum_{1}^{\infty} p^{-\frac{3}{2}} \approx 2.612$ and $\int_{0}^{\infty} \frac{x^{\frac{3}{2}}}{1+x^{3}} d x=\frac{2 \pi}{3}$.
7. The constitutive equation for the Upper Convected Maxwell model is

$$
\boldsymbol{\tau}=-\beta \mathbf{I}+G \mathbf{A},
$$

where the structure tensor A satisfies

$$
\frac{d \mathbf{A}}{d t}=\mathbf{K} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{K}^{T}-\frac{1}{\tau}(\mathbf{A}-\mathbf{I})
$$

and \mathbf{K} is the velocity gradient tensor.
(a) A cylinder of length L_{0} and radius a_{0} is formed from a polymeric material that obeys the Upper Convected Maxwell model. Initially the polymers are unstretched so that $\mathbf{A}=\mathbf{I}$. For $t>0$ an axial force, $F(t)$ is applied to stretch the cylinder uniformly, so that its length increase as $L(t)=L_{0} \exp (E t)$. Show, from conservation of mass, that the radius must decrease as $a(t)=a_{0} \exp \left(-\frac{1}{2} E t\right)$ and the velocity gradient expressed in cylindrical polar coordinates (r, θ, z) is given by

$$
\mathbf{K}=\left(\begin{array}{ccc}
-\frac{1}{2} E & 0 & 0 \\
0 & -\frac{1}{2} E & 0 \\
0 & 0 & E
\end{array}\right)
$$

(b) Write down the equations for evolution of the tensor components, $A_{r r}, A_{\theta \theta}$ and $A_{z z}$. Show for $E>\frac{1}{2 \tau}$ that these are given by

$$
\begin{aligned}
A_{r r}=A_{\theta \theta} & =\frac{1}{1+E \tau}\left(1+E \tau \exp \left[-\left(\frac{1}{\tau}+E\right) t\right]\right), \\
A_{z z} & =\frac{1}{2 E \tau-1}\left(2 E \tau \exp \left[\left(2 E-\frac{1}{\tau}\right) t\right]-1\right) .
\end{aligned}
$$

(c) Show that the magnitude of the axial force required to stretch the cylinder is

$$
F(t)=G \pi a^{2}\left(A_{z z}-A_{r r}\right),
$$

and hence calculate $F(t)$. By examining the limit $t \rightarrow \infty$, show that the $F(t)$ decays to zero for $E<\frac{1}{\tau}$, but increases exponentially for $E>\frac{1}{\tau}$. What happens for $E=\frac{1}{\tau}$?

Formula Sheet

Cartesian coordinates

 pressure, p, velocity, $\mathbf{u}=u \mathbf{e}_{x}+v \mathbf{e}_{y}+w \mathbf{e}_{z}$, velocity gradient, \mathbf{K} with $K_{i j}=\frac{\partial u_{i}}{\partial x_{j}}$$$
\left.\begin{array}{r}
\nabla p=\frac{\partial p}{\partial x} \mathbf{e}_{x}+\frac{\partial p}{\partial y} \mathbf{e}_{y}+\frac{\partial p}{\partial z} \mathbf{e}_{z}, \\
\mathbf{K}=\left(\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right) \quad \nabla \cdot \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}, \\
\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{y x}}{\partial y}+\frac{\partial \sigma_{z x}}{\partial z} \\
\frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \sigma_{z y}}{\partial z} \\
\frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{y z}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}
\end{array}\right)
$$

Cylindrical Polar Coordinates

velocity, $\mathbf{u}=u \mathbf{e}_{r}+v \mathbf{e}_{\theta}+w \mathbf{e}_{z}$.

$$
\begin{gathered}
\nabla p=\frac{\partial p}{\partial r} \mathbf{e}_{r}+\frac{1}{r} \frac{\partial p}{\partial \theta} \mathbf{e}_{\theta}+\frac{\partial p}{\partial z} \mathbf{e}_{z}, \quad \nabla \cdot \mathbf{u}=\frac{1}{r} \frac{\partial}{\partial r}(r u)+\frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{\partial w}{\partial z}, \\
\mathbf{K}=\left(\begin{array}{lll}
\frac{\partial u}{\partial r} & \frac{1}{r} \frac{\partial u}{\partial \theta}-\frac{v}{r} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial r} & \frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{u}{r} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial r} & \frac{1}{r} \frac{\partial w}{\partial \theta} & \frac{\partial w}{\partial z}
\end{array}\right) \\
\nabla \cdot \boldsymbol{\sigma}=\left(\begin{array}{c}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \sigma_{r r}\right)+\frac{1}{r} \frac{\partial \sigma_{\theta r}}{\partial \theta}+\frac{\partial \sigma_{z r}}{\partial z}-\frac{\sigma_{\theta \theta}}{r} \\
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \sigma_{r \theta}\right)+\frac{1}{r} \frac{\partial \sigma_{\theta \theta}}{\partial \theta}+\frac{\partial \sigma_{z \theta}}{\partial z}+\frac{\sigma_{\theta r}-\sigma_{r \theta}}{r} \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \sigma_{r z}\right)+\frac{1}{r} \frac{\partial \sigma_{\theta z}}{\partial \theta}+\frac{\partial \sigma_{z z}}{\partial z}
\end{array}\right)
\end{gathered}
$$

Spherical Polar Coordinates

$\mathbf{u}=u \mathbf{e}_{r}+v \mathbf{e}_{\theta}+w \mathbf{e}_{\phi}$

$$
\begin{aligned}
& \nabla p=\frac{\partial p}{\partial r} \mathbf{e}_{r}+\frac{1}{r} \frac{\partial p}{\partial \theta} \mathbf{e}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi} \mathbf{e}_{\phi}, \\
& \nabla \cdot \mathbf{u}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(v \sin \theta)+\frac{1}{r \sin \theta} \frac{\partial w}{\partial \phi}, \\
& \mathbf{K}=\left(\begin{array}{ll}
\frac{\partial u}{\partial r} & \frac{1}{r} \frac{\partial u}{\partial \theta}-\frac{v}{r} \\
\frac{\partial v}{\partial r} & \frac{1}{r \sin \theta} \frac{\partial v}{\partial \theta}+\frac{u}{r} \\
\frac{\partial u}{\partial \sin \theta}-\frac{w}{r} \\
\frac{\partial w}{\partial r} & \frac{1}{r} \frac{\partial v}{\partial \theta}-\frac{w}{r} \\
\frac{1}{r \sin \theta} \frac{\partial w}{\partial \phi}+\frac{u}{r}+\frac{v}{r} \cot \theta
\end{array}\right) \\
& \nabla \cdot \boldsymbol{\sigma}=\left(\begin{array}{c}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \sigma_{r r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sigma_{\theta r} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial \sigma_{\phi r}}{\partial \phi}-\frac{\sigma_{\theta \theta}+\sigma_{\phi \phi}}{r} \\
-\frac{1}{r^{3}} \frac{\partial}{\partial r}\left(r^{3} \sigma_{r \theta}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sigma_{\theta \theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial \sigma_{\phi \theta \theta}}{\partial \phi}+\frac{\sigma_{\theta r}-\sigma_{r \theta}-\sigma_{\phi \phi} \cot \theta}{r} \\
\frac{1}{r^{3}} \frac{\partial}{\partial r}\left(r^{3} \sigma_{r \phi}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sigma_{\theta \phi} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial \sigma_{\phi \phi}}{\partial \phi}+\frac{\sigma_{\phi r}-\sigma_{r \phi}+\sigma_{\phi \theta} \cot \theta}{r}
\end{array}\right)
\end{aligned}
$$

