MATH445001

(C) UNIVERSITY OF LEEDS

Examination for the Module MATH4450
(May/June 2002)

Polymeric Fluids

Time allowed: $\mathbf{3}$ hours

Answer FIVE of the SEVEN questions.
All questions carry equal marks.

1. In the power-law fluid model the shear stress, σ is equal to $\sigma=K|\dot{\gamma}|^{n-1} \dot{\gamma}$, where K and n are positive constants.
(a) Explain what is meant by the terms shear thinning and shear thickening and state the range of values of n for which the power law fluid is shear-thinning or shear-thickening.
(b) A power-law fluid is driven along a cylindrical pipe of radius a by a pressure gradient $\frac{\partial p}{\partial z}=-G$. Show that the shear stress σ is given in terms of the shear-rate $\dot{\gamma}$ by

$$
\sigma=-\frac{1}{2} G r .
$$

Find the form of the fluid velocity, w and sketch a graph showing $w(r)$ for (a) $n=0.5$, (b) $n=1$ and (c) $n=2$. Explain the differences in the velocity profiles.
(c) Calculate the volume flux, $Q=2 \pi \int_{0}^{a} r w d r$ down the pipe. A Newtonian fluid of viscosity μ and a power-law fluid of index $n=0.5$ have the same volume flow rate down a pipe of radius a when a pressure gradient G is applied. Find the increase in the volume flow -rate of each fluid if:
(i) the pressure gradient is doubled from G to $2 G$,
(ii) the pipe is replaced by a pipe of radius $2 a$.

Explain why the volume flow rate of the shear-thinning fluid is now larger in both cases.
2. (a) Write down the equations of mass and momentum conservation for an incompressible fluid with pressure, p, density, ρ, extra stress, $\boldsymbol{\sigma}$, and velocity, \mathbf{u}, that is subject to a gravitational acceleration \mathbf{g}. Under what circumstances can fluid inertia be neglected and how does this simplify these equations?
(b) Using the appropriate formulae for cylindrical polar coordinates write down the velocity gradient for a flow in which the fluid velocity is given in cylindrical polar coordinates (r, θ, z) by $\mathbf{u}=(0, v(r), 0)$. Show that the $r \theta$ component of the strain-rate tensor, \mathbf{E},

$$
E_{r \theta}=\frac{1}{2} \dot{\gamma}=\frac{r}{2} \frac{\partial}{\partial r}\left(\frac{v}{r}\right),
$$

where $\dot{\gamma}$ is the local shear-rate. Define the shear viscosity, $\mu(\dot{\gamma})$, and first and second normal stress differences, $N_{1}(\dot{\gamma})$ and $N_{2}(\dot{\gamma})$, in terms of the components of the extra stress tensor σ.
(c) A vertical rod of radius a rotates at an angular velocity Ω in a polymeric fluid in which

$$
\mu(\dot{\gamma})=\mu_{0}, \quad N_{1}(\dot{\gamma})=A \dot{\gamma}^{2}, \quad N_{2}(\dot{\gamma})=0
$$

where μ_{0} and A are both positive constants. Write down the components of the momentum equation on the assumption that fluid inertia is negligible, and show that this leads to the following equations

$$
\begin{aligned}
\frac{\mu_{0}}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \dot{\gamma}\right) & =0, \\
\frac{\partial}{\partial r}\left(-p+\sigma_{z z}\right) & =\frac{A}{r} \dot{\gamma}^{2} \\
\frac{\partial}{\partial z}\left(-p+\sigma_{z z}\right) & =\rho g
\end{aligned}
$$

Hence find the fluid velocity $v(r)$ and show that

$$
\dot{\gamma}=-\frac{2 \Omega a^{2}}{r^{2}}
$$

(d) If the top surface is open to the atmosphere, show that the position of this surface is given by

$$
h(r)=h_{\infty}+\frac{A \Omega^{2} a^{2}}{\rho g r^{4}}
$$

where h_{∞} is the height for $r \rightarrow \infty$.
3. The extra stress σ in the linear Maxwell model is related to the strain-rate by

$$
\tau \frac{\partial \boldsymbol{\sigma}}{\partial t}+\boldsymbol{\sigma}=2 \mu \mathbf{E}(t)
$$

Show that this may be written in the form

$$
\boldsymbol{\sigma}=2 \int_{-\infty}^{t} G\left(t-t^{\prime}\right) \mathbf{E}\left(t^{\prime}\right) d t^{\prime}
$$

for some suitable choice for the relaxation modulus $G(t)$. Show that

$$
\int_{0}^{\infty} G(t) d t=\mu
$$

Find the shear stress $\sigma_{x y}(t)$ generated by the fluid velocity $\mathbf{u}=(\dot{\gamma} y, 0,0)$ in the following cases:
(a) $\dot{\gamma}= \begin{cases}k & t<0, \\ 0 & t \geq 0 .\end{cases}$
(b) $\dot{\gamma}= \begin{cases}k & -T \leq t<0, \\ -k & 0 \leq t \leq T, \\ 0 & |t|>T .\end{cases}$

For each case sketch graphs of $\sigma_{x y}$ and $\dot{\gamma}$ as functions of time. For case (c) show that there must be a time t_{0} in the interval $0<t_{0}<T$ at which $\sigma_{x y}=0$. Find the value of t_{0}.
4. The expression for the total stress in a rubber is

$$
\boldsymbol{\tau}=G \mathbf{F} \cdot \mathbf{F}^{T}-\beta \mathbf{I} .
$$

(a) What is the deformation gradient, \mathbf{F}, and stress, $\boldsymbol{\tau}$, for uniaxial extension by a ratio λ in the z-direction? A piece of rubber, of initial cross sectional area A_{0} is stretched by a ratio λ. If the sides of the rubber are exposed to the atmosphere, so that $\tau_{x x}=\tau_{y y}=$ $-p_{\text {atm }}$, show that the force required to achieve the stretch is

$$
f=G A_{0}\left(\lambda-\frac{1}{\lambda^{2}}\right) .
$$

(b) A mass m is suspended from a piece of rubber of initial length l_{0} and cross sectional area A_{0}, as shown in the diagram.

(i) What is the relationship between the stretch λ, the length of the rubber, l, and the initial length, l_{0} ?
(ii) By balancing the forces on the mass, obtain a relation between the mass m and the equilibrium stretch of the rubber $\lambda_{e q}$.
(iii) What is the change in λ for a small downward displacement x from the equilibrium position? By considering the forces on the mass after such a displacement, show that

$$
m \frac{d^{2} x}{d t^{2}}=-\frac{G A_{0}}{l_{0}}\left(1+\frac{2}{\lambda_{e q}^{3}}\right) x
$$

(iv) Hence show that the time period for small vertical oscillations is

$$
T_{v}=2 \pi\left(\frac{l_{0}}{g} \frac{\lambda_{e q}^{4}-\lambda_{e q}}{\lambda_{e q}^{3}+2}\right)^{\frac{1}{2}}
$$

where g is the acceleration due to gravity.
5. The Langevin equation for a particle in a quadratic potential $U=\frac{1}{2} k x^{2}$ is

$$
\zeta \frac{d x}{d t}=-k x+f(t)
$$

where $\left\langle f(t) f\left(t^{\prime}\right)\right\rangle=2 k_{\mathrm{B}} T \zeta \delta\left(t-t^{\prime}\right)$.
(a) Show that the solution of this equation, subject to initial condition $x(0)=0$, is

$$
x(t)=\frac{1}{\zeta} \int_{0}^{t} d t^{\prime} f\left(t^{\prime}\right) \exp \left(\frac{t^{\prime}-t}{\tau}\right)
$$

where $\tau=\frac{\zeta}{k}$.
(b) Hence show that

$$
\left\langle x(t)^{2}\right\rangle=\frac{k_{\mathrm{B}} T}{k}\left(1-\exp \left(-\frac{2 t}{\tau}\right)\right)
$$

(c)
(i) Obtain the limiting form of $\left\langle x(t)^{2}\right\rangle$ for $t \ll \tau$ and compare your result with freeparticle diffusion (where $\left\langle x(t)^{2}\right\rangle=2 D t$).
(ii) Obtain the limiting form of $\left\langle x(t)^{2}\right\rangle$ for $t \gg \tau$. In this limit, show that the average energy $\langle U\rangle$ approaches $\frac{1}{2} k_{\mathrm{B}} T$.
6. The Rouse equation for a polymer chain comprising beads with friction constant ζ connected with springs of spring constant k is

$$
\zeta\left(\frac{\partial \mathbf{r}_{s}}{\partial t}-\mathbf{v}\left(\mathbf{r}_{s}\right)\right)=k \frac{\partial^{2} \mathbf{r}_{s}}{\partial s^{2}}+\mathbf{f}_{s}, s=0 . . N
$$

with boundary conditions

$$
\left.\frac{\partial \mathbf{r}_{s}}{\partial s}\right|_{s=0}=0 \text { and }\left.\frac{\partial \mathbf{r}_{s}}{\partial s}\right|_{s=N}=0
$$

(a) In terms of the forces acting on a bead, briefly discuss the origin of the term, $\frac{\partial^{2} \mathbf{r}_{s}}{\partial s^{2}}$.
(b) Ignoring the terms due to velocity, $\mathbf{v}\left(\mathbf{r}_{s}\right)$, and random force, \mathbf{f}_{s}, show that the relaxation time of the p th normal mode, $\mathbf{r}_{s}=\mathbf{X}_{p} \cos \left(\frac{\pi p s}{N}\right)$, is

$$
\tau_{p}=\frac{\tau_{1}}{p^{2}}
$$

where $\tau_{1}=\frac{N^{2} \zeta}{\pi^{2} k}$.
(c) Given that this leads to a time-dependent modulus of form

$$
G(t)=G_{0} \sum_{p=1}^{\infty} \exp \left(-\frac{p^{2} t}{\tau_{1}}\right)
$$

use $G^{*}=G^{\prime}+i G^{\prime \prime}=\int_{0}^{\infty} i \omega G(s) \exp (-i \omega s) d s$ to show that

$$
\begin{aligned}
G^{\prime} & =G_{0} \sum_{p=1}^{\infty} \frac{\omega^{2} \tau_{1}^{2}}{p^{4}+\omega^{2} \tau_{1}^{2}}, \\
G^{\prime \prime} & =G_{0} \sum_{p=1}^{\infty} \frac{p^{2} \omega \tau_{1}}{p^{4}+\omega^{2} \tau_{1}^{2}},
\end{aligned}
$$

and obtain approximations of the form $G^{\prime \prime}=c \omega^{\alpha}$ for $\omega \tau_{1} \ll 1$ and (by approximating the sum as an integral) for $\omega \tau_{1} \gg 1$. Hence sketch a graph of $\log G^{\prime \prime}$ versus $\log \omega$.

You may use the results:

$$
\begin{aligned}
\sum_{1}^{\infty} p^{-2} & =\frac{\pi^{2}}{6} \\
\int_{0}^{\infty} \frac{x^{2}}{1+x^{4}} d x & =\frac{\pi}{2 \sqrt{2}} .
\end{aligned}
$$

7. The stress in the upper convected Maxwell model is given by

$$
\boldsymbol{\tau}=-\beta \mathbf{I}+G \mathbf{A}
$$

where the second rank tensor A satisfies

$$
\frac{D \mathbf{A}}{D t}=\mathbf{K} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{K}^{\mathrm{T}}-\frac{1}{\tau}(\mathbf{A}-\mathbf{I})
$$

and $K_{i j}=\frac{\partial u_{i}}{\partial x_{j}}$ is the velocity gradient.
Fluid is placed in the gap between two plates of surface area S located at $z= \pm h$. Each plate is coated with a lubricant so that the fluid can slip at the plate surfaces, so that the fluid velocity between the plates is of the form

$$
\mathbf{u}=(E(t) x, E(t) y,-2 E(t) z) .
$$

Show that

$$
E(t)=-\frac{1}{2 h} \frac{d h}{d t}
$$

Find $E(t)$ if the plates are squeezed together so that

$$
h(t)= \begin{cases}h_{0} \mathrm{e}^{-\frac{2 t}{\tau}} & 0 \leq t \leq \tau \\ h_{0} e^{-2} & t>\tau\end{cases}
$$

The fluid is at equilibrium at $t=0$, so that $\mathbf{A}=\mathbf{I}$. Deduce that for $t>0$ the only non-zero components of the \mathbf{A} are $A_{x x}, A_{y y}$ and $A_{z z}$ and that $A_{x x}=A_{y y}$. Find $\mathbf{A}(t)$ for $t>0$. If the edges of the plates are open to the atmosphere so that $\tau_{x x}=\tau_{y y}=-p_{\text {atm }}$, show that the net force exerted by the fluid on the plates,

$$
F=G S\left(A_{x x}-A_{z z}\right)
$$

Find $F(t)$ and explain why F is non-zero for $t>\tau$?

Formulae Sheet

Cartesian coordinates

 pressure, p, velocity, $\mathbf{u}=u \mathbf{e}_{x}+v \mathbf{e}_{y}+w \mathbf{e}_{z}$, velocity gradient, \mathbf{K} with $K_{i j}=\frac{\partial u_{i}}{\partial x_{j}}$$$
\left.\begin{array}{r}
\nabla p=\frac{\partial p}{\partial x} \mathbf{e}_{x}+\frac{\partial p}{\partial y} \mathbf{e}_{y}+\frac{\partial p}{\partial z} \mathbf{e}_{z}, \\
\mathbf{K}=\left(\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right) \quad \nabla \cdot \mathbf{u}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}, \\
\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{y x}}{\partial y}+\frac{\partial \sigma_{z x}}{\partial z} \\
\frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \sigma_{z y}}{\partial z} \\
\frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{y z}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}
\end{array}\right)
$$

Cylindrical Polar Coordinates

velocity, $\mathbf{u}=u \mathbf{e}_{r}+v \mathbf{e}_{\theta}+w \mathbf{e}_{z}$.

$$
\begin{gathered}
\nabla p=\frac{\partial p}{\partial r} \mathbf{e}_{r}+\frac{1}{r} \frac{\partial p}{\partial \theta} \mathbf{e}_{\theta}+\frac{\partial p}{\partial z} \mathbf{e}_{z}, \quad \nabla \cdot \mathbf{u}=\frac{1}{r} \frac{\partial}{\partial r}(r u)+\frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{\partial w}{\partial z}, \\
\mathbf{K}=\left(\begin{array}{ccc}
\frac{\partial u}{\partial r} & \frac{1}{r} \frac{\partial u}{\partial \theta}-\frac{v}{r} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial r} & \frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{u}{r} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial r} & \frac{1}{r} \frac{\partial w}{\partial \theta} & \frac{\partial w}{\partial z}
\end{array}\right) \\
\nabla \cdot \boldsymbol{\sigma}=\left(\begin{array}{c}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \sigma_{r r}\right)+\frac{1}{r} \frac{\partial \sigma_{\theta r}}{\partial \theta}+\frac{\partial \sigma_{z r}}{\partial z}-\frac{\sigma_{\theta \theta}}{r} \\
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \sigma_{r \theta}\right)+\frac{1}{r} \frac{\partial \sigma_{\theta \theta}}{\partial \theta}+\frac{\partial \sigma_{z \theta}}{\partial z}+\frac{\sigma_{\theta r}-\sigma_{r \theta}}{r} \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \sigma_{r z}\right)+\frac{1}{r} \frac{\partial \sigma_{\theta z}}{\partial \theta}+\frac{\partial \sigma_{z z}}{\partial z}
\end{array}\right)
\end{gathered}
$$

Spherical Polar Coordinates

$\mathbf{u}=u \mathbf{e}_{r}+v \mathbf{e}_{\theta}+w \mathbf{e}_{\phi}$

$$
\begin{aligned}
& \nabla p=\frac{\partial p}{\partial r} \mathbf{e}_{r}+\frac{1}{r} \frac{\partial p}{\partial \theta} \mathbf{e}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi} \mathbf{e}_{\phi}, \\
& \nabla \cdot \mathbf{u}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(v \sin \theta)+\frac{1}{r \sin \theta} \frac{\partial w}{\partial \phi}, \\
& \mathbf{K}=\left(\begin{array}{ll}
\frac{\partial u}{\partial r} & \frac{1}{r} \frac{\partial u}{\partial \theta}-\frac{v}{r} \\
\frac{\partial v}{\partial r} & \frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{u}{r} \\
\frac{\partial w}{} \theta & \frac{1}{\partial \sin \theta} \frac{\partial v}{\partial \phi}-\frac{w}{r} \\
\frac{\partial w}{\partial r} & \frac{1}{r} \frac{\partial w}{\partial \theta} \\
\cot \theta \\
r \sin \theta & \frac{1}{\partial \phi}+\frac{\partial w}{r}+\frac{v}{r} \cot \theta
\end{array}\right) \\
& \nabla \cdot \boldsymbol{\sigma}=\left(\begin{array}{c}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \sigma_{r r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sigma_{\theta r} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial \sigma_{\phi r}}{\partial \phi}-\frac{\sigma_{\theta \theta}+\sigma_{\phi \phi}}{r} \\
\frac{1}{r^{3}} \frac{\partial}{\partial r}\left(r^{3} \sigma_{r \theta}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sigma_{\theta \theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial \sigma_{\phi \theta}}{\partial \phi}+\frac{\sigma_{\theta r}-\sigma_{r \theta}-\sigma_{\phi \phi} \cot \theta}{r} \\
\frac{1}{r^{3}} \frac{\partial}{\partial r}\left(r^{3} \sigma_{r \phi}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sigma_{\theta \phi} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial \sigma_{\phi \phi}}{\partial \phi}+\frac{\sigma_{\phi r}-\sigma_{r \phi}+\sigma_{\phi \theta} \cot \theta}{r}
\end{array}\right)
\end{aligned}
$$

