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Answer FIVE of the SEVEN questions.

All questions carry equal marks.

1. In the power-law fluid model the shear stress,σ is equal toσ = K|γ̇|n−1γ̇, whereK andn

are positive constants.

(a) Explain what is meant by the termsshear thinning andshear thickening and state the
range of values ofn for which the power law fluid is shear-thinning or shear-thickening.

(b) A power-law fluid is driven along a cylindrical pipe of radiusa by a pressure gradient
∂p

∂z
= −G. Show that the shear stressσ is given in terms of the shear-rateγ̇ by

σ = −1

2
Gr.

Find the form of the fluid velocity,w and sketch a graph showingw(r) for (a) n = 0.5,
(b) n = 1 and (c)n = 2. Explain the differences in the velocity profiles.

(c) Calculate the volume flux,Q = 2π
∫ a

0
rwdr down the pipe. A Newtonian fluid of

viscosity µ and a power-law fluid of indexn = 0.5 have the same volume flow rate
down a pipe of radiusa when a pressure gradientG is applied. Find the increase in
the volume flow -rate of each fluid if:

(i) the pressure gradient is doubled fromG to 2G,

(ii) the pipe is replaced by a pipe of radius2a.

Explain why the volume flow rate of the shear-thinning fluid isnow larger in both cases.
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2. (a) Write down the equations of mass and momentum conservation for an incompressible
fluid with pressure,p, density,ρ, extra stress,σ , and velocity,u, that is subject to a
gravitational accelerationg . Under what circumstances can fluid inertia be neglected
and how does this simplify these equations?

(b) Using the appropriate formulae for cylindrical polar coordinates write down the velocity
gradient for a flow in which the fluid velocity is given in cylindrical polar coordinates
(r, θ, z) by u = (0, v(r), 0). Show that therθ component of the strain-rate tensor,E ,

Erθ =
1

2
γ̇ =

r

2

∂

∂r

(v

r

)

,

where γ̇ is the local shear-rate. Define the shear viscosity,µ(γ̇), and first and second
normal stress differences,N1(γ̇) and N2(γ̇), in terms of the components of the extra
stress tensorσ .

(c) A vertical rod of radiusa rotates at an angular velocityΩ in a polymeric fluid in which

µ(γ̇) = µ0, N1(γ̇) = Aγ̇2, N2(γ̇) = 0,

whereµ0 and A are both positive constants. Write down the components of the mo-
mentum equation on the assumption that fluid inertia is negligible, and show that this
leads to the following equations

µ0

r2

∂

∂r

(

r2γ̇
)

= 0,

∂

∂r
(−p + σzz) =

A

r
γ̇2,

∂

∂z
(−p + σzz) = ρg.

Hence find the fluid velocityv(r) and show that

γ̇ = −2Ωa2

r2
.

(d) If the top surface is open to the atmosphere, show that the position of this surface is
given by

h(r) = h∞ +
AΩ2a2

ρgr4
,

whereh∞ is the height forr → ∞ .

3. The extra stressσ in the linear Maxwell model is related to the strain-rate by

τ
∂σ

∂t
+ σ = 2µE(t).

Show that this may be written in the form

σ = 2

∫ t

−∞

G(t − t′)E(t′)dt′,
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for some suitable choice for the relaxation modulusG(t). Show that

∫

∞

0

G(t)dt = µ.

Find the shear stressσxy(t) generated by the fluid velocityu = (γ̇y, 0, 0) in the following
cases:

(a) γ̇ =

{

k t < 0,

0 t ≥ 0.

(b) γ̇ =











k −T ≤ t < 0,

−k 0 ≤ t ≤ T,

0 |t| > T.

For each case sketch graphs ofσxy and γ̇ as functions of time. For case (c) show that there
must be a timet0 in the interval0 < t0 < T at whichσxy = 0. Find the value oft0 .

4. The expression for the total stress in a rubber is

τ = GF · FT − βI.

(a) What is the deformation gradient,F, and stress,τ , for uniaxial extension by a ratioλ
in the z -direction? A piece of rubber, of initial cross sectional areaA0 is stretched by
a ratioλ. If the sides of the rubber are exposed to the atmosphere, so that τxx = τyy =
−patm , show that the force required to achieve the stretch is

f = GA0

(

λ − 1

λ2

)

.

(b) A massm is suspended from a piece of rubber of initial lengthl0 and cross sectional
areaA0 , as shown in the diagram.

Mass

Rubber

(i) What is the relationship between the stretchλ, the length of the rubber,l , and the
initial length, l0?

(ii) By balancing the forces on the mass, obtain a relation between the massm and the
equilibrium stretch of the rubberλeq .
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(iii) What is the change inλ for a small downward displacementx from the equilib-
rium position? By considering the forces on the mass after such a displacement,
show that

m
d2x

dt2
= −GA0

l0

(

1 +
2

λ3
eq

)

x.

(iv) Hence show that the time period for small vertical oscillations is

Tv = 2π

(

l0

g

λ4
eq − λeq

λ3
eq + 2

)

1

2

,

whereg is the acceleration due to gravity.

5. The Langevin equation for a particle in a quadratic potential U = 1

2
kx2 is

ζ
dx

dt
= −kx + f (t) ,

where〈f (t) f (t′)〉 = 2kBTζδ (t − t′) .

(a) Show that the solution of this equation, subject to initial condition x (0) = 0, is

x (t) =
1

ζ

∫ t

0

dt′f (t′) exp

(

t′ − t

τ

)

,

whereτ = ζ

k
.

(b) Hence show that
〈

x (t)2
〉

=
kBT

k

(

1 − exp

(

−2t

τ

))

.

(c)

(i) Obtain the limiting form of
〈

x (t)2
〉

for t ≪ τ and compare your result with free-
particle diffusion (where

〈

x (t)2
〉

= 2Dt).

(ii) Obtain the limiting form of
〈

x (t)2
〉

for t ≫ τ . In this limit, show that the average
energy〈U〉 approaches1

2
kBT .

6. The Rouse equation for a polymer chain comprising beads withfriction constantζ connected
with springs of spring constantk is

ζ

(

∂rs

∂t
− v (rs)

)

= k
∂2rs

∂s2
+ fs, s = 0..N,

with boundary conditions

∂rs

∂s

∣

∣

∣

∣

s=0

= 0 and
∂rs

∂s

∣

∣

∣

∣

s=N

= 0.

(a) In terms of the forces acting on a bead, briefly discuss the origin of the term,∂
2
rs

∂s2 .
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(b) Ignoring the terms due to velocity,v (rs), and random force,fs , show that the relaxation
time of thepth normal mode,rs = Xp cos

(

πps

N

)

, is

τp =
τ1

p2
,

whereτ1 = N2ζ

π2k
.

(c) Given that this leads to a time-dependent modulus of form

G (t) = G0

∞
∑

p=1

exp

(

−p2t

τ1

)

,

useG∗ = G′ + iG′′ =
∫

∞

0
iωG (s) exp (−iωs) ds to show that

G′ = G0

∞
∑

p=1

ω2τ 2
1

p4 + ω2τ 2
1

,

G′′ = G0

∞
∑

p=1

p2ωτ1

p4 + ω2τ 2
1

,

and obtain approximations of the formG′′ = cωα for ωτ1 ≪ 1 and (by approximating
the sum as an integral) forωτ1 ≫ 1. Hence sketch a graph oflog G′′ versuslog ω .

You may use the results:

∞
∑

1

p−2 =
π2

6
,

∫

∞

0

x2

1 + x4
dx =

π

2
√

2
.

7. The stress in the upper convected Maxwell model is given by

τ = −βI + GA,

where the second rank tensorA satisfies

DA

Dt
= K · A + A · KT − 1

τ
(A− I) ,

andKij = ∂ui

∂xj
is the velocity gradient.

Fluid is placed in the gap between two plates of surface areaS located atz = ±h. Each
plate is coated with a lubricant so that the fluid can slip at the plate surfaces, so that the fluid
velocity between the plates is of the form

u = (E(t)x, E(t)y,−2E(t)z) .
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Show that

E(t) = − 1

2h

dh

dt
.

Find E(t) if the plates are squeezed together so that

h(t) =

{

h0e
−

2t
τ 0 ≤ t ≤ τ,

h0e
−2 t > τ.

The fluid is at equilibrium att = 0, so thatA = I. Deduce that fort > 0 the only non-zero
components of theA areAxx , Ayy andAzz and thatAxx = Ayy . Find A(t) for t > 0. If
the edges of the plates are open to the atmosphere so thatτxx = τyy = −patm, show that the
net force exerted by the fluid on the plates,

F = GS(Axx − Azz)

Find F (t) and explain whyF is non-zero fort > τ ?
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Formulae Sheet

Cartesian coordinates

pressure,p, velocity,u = uex + vey + wez , velocity gradient,K with Kij = ∂ui

∂xj

∇p =
∂p

∂x
ex +

∂p

∂y
ey +

∂p

∂z
ez, ∇ · u =

∂u

∂x
+

∂v

∂y
+

∂w

∂z
,

K =























∂u

∂x

∂u

∂y

∂u

∂z

∂v

∂x

∂v

∂y

∂v

∂z

∂w

∂x

∂w

∂y

∂w

∂z























∇ · σ =























∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z

∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z























Cylindrical Polar Coordinates

velocity, u = uer + veθ + wez .

∇p =
∂p

∂r
er +

1

r

∂p

∂θ
eθ +

∂p

∂z
ez, ∇ · u =

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+

∂w

∂z
,

K =





















∂u

∂r

1

r

∂u

∂θ
− v

r

∂u

∂z

∂v

∂r

1

r

∂v

∂θ
+

u

r

∂v

∂z

∂w

∂r

1

r

∂w

∂θ

∂w

∂z





















∇ · σ =





















1

r

∂

∂r
(rσrr) +

1

r

∂σθr

∂θ
+

∂σzr

∂z
− σθθ

r

1

r2

∂

∂r

(

r2σrθ

)

+
1

r

∂σθθ

∂θ
+

∂σzθ

∂z
+

σθr − σrθ

r

1

r

∂

∂r
(rσrz) +

1

r

∂σθz

∂θ
+

∂σzz

∂z
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Spherical Polar Coordinates

u = uer + veθ + weφ

∇p =
∂p

∂r
er +

1

r

∂p

∂θ
eθ +

1

r sin θ

∂p

∂φ
eφ,

∇ · u =
1

r2

∂

∂r

(

r2u
)

+
1

r sin θ

∂

∂θ
(v sin θ) +

1

r sin θ

∂w

∂φ
,

K =























∂u

∂r

1

r

∂u

∂θ
− v

r

1

r sin θ

∂u

∂φ
− w

r

∂v

∂r

1

r

∂v

∂θ
+

u

r

1

r sin θ

∂v

∂φ
− w

r
cot θ

∂w

∂r

1

r

∂w

∂θ

1

r sin θ

∂w

∂φ
+

w

r
+

v

r
cot θ























∇ · σ =















1

r2

∂
∂r

(r2σrr) + 1

r sin θ
∂
∂θ

(σθr sin θ) + 1

r sin θ

∂σφr

∂φ
− σθθ+σφφ

r

1

r3

∂
∂r

(r3σrθ) + 1

r sin θ
∂
∂θ

(σθθ sin θ) + 1

r sin θ

∂σφθ

∂φ
+

σθr−σrθ−σφφ cot θ

r

1

r3

∂
∂r

(r3σrφ) + 1

r sin θ
∂
∂θ

(σθφ sin θ) + 1

r sin θ

∂σφφ

∂φ
+

σφr−σrφ+σφθ cot θ

r
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