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1. (a) Let x follow a multivariate normal distribution, x ∼ Np(µ, Σ). Describe the
contours of constant probability density for x. How can the eigenvalues and eigen-
vectors of Σ be used to help plot these contours? Give a sketch of these contours
for the case

µ = (3, 1)T , Σ =

[
3 −2
−2 3

]
.

(b) For general µ and Σ, show that (x− µ)T Σ−1(x− µ) ∼ χ2
p. How can this result

be used in practice to help identify outliers in a dataset?

(c) If µ = (3, 1)T and Σ =

[
3 −2
−2 3

]
as above, explain why

1

42
(x1 − 3x2)

2 ∼ χ2
1.
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2. (a) Suppose measurements of p variables are made on n1 individuals from one group
x1,1, . . . ,x1,n1 and on n2 individuals from another group, x2,1, . . . ,x2,n2 . Describe
how the union-intersection approach to compare the means of the two groups leads
to the statistic

T 2 =
n1n2

n1 + n2

(x1 − x2)
T S−1(x1 − x2),

where x1 = n−1
1

n1∑
j=1

x1,j, x2 = n−1
2

n2∑
k=1

x2,k

and S = 1
n1+n2−2

{
n∑

j=1

x1,j xT
1,j +

n2∑
k=1

x2,k xT
2,k − n1 x1x

T
1 − n2 x2x

T
2

}
Describe the assumptions under which this statistic T 2 will follow Hotelling’s T 2

distribution, and give the asymptotic distribution in this case when n1 →∞ with
n2 fixed.

(b) In an archaeological study to compare male Egyptian skulls from two epochs, the
following two variables were measured

x1 = maximum breadth (in mm), x2 = nasal height (in mm).

Samples of size 11 were taken from the Early predynastic epoch and the Ro-
man epoch, respectively. The following mean vector and covariance matrix were
obtained for each epoch.

x1 =

[
130.9
49.9

]
, S1 =

[
40 16
16 11

]
,

x2 =

[
132.8
51.9

]
, S2 =

[
26 2
2 15

]
.

Compare the two epochs on the basis of the information provided here.

[Hints:

1. You may use the fact that the Hotelling T 2 and F distribution are related by
T 2(p, m) = {mp/(m− p + 1)} F (p, m− p + 1).

2. Simultaneous 100α% confidence intervals for this problem can be written in
the form

(aT (x1 − x2)− c, aT (x1 − x2) + c)

where c = {T 2
α(p, ν)

n1 + n2

n1n2

aT Sa}
1
2 and T 2

α(p, ν) is the 100α percentage

point of the T 2(p, ν) distribution.]
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3. (a) Let x(p × 1) be a random vector with mean µ and covariance matrix Σ. Let
Σ = ΓΛΓT be the spectral decomposition of Σ, where Γ is an orthogonal matrix
and Λ is diagonal. Define the principal components of x and show that var(aTx),
where a is a vector of coefficients satisfying aTa = 1, is maximized when aTx is the
first principal component. What is the purpose of principal component analysis in
the exploratory analysis of multivariate data?

(b) Suppose an observation z(p× 1) can be written as “signal” plus “noise”,

z = x + u

where x has covariance matrix Σ as above, and u has covariance matrix τ 2I,
proportional to the identity matrix, with x and u uncorrelated. Find the covariance
matrix of z and describe the relationship between the principal components of z
and those of x. Find a vector of coefficients a(p× 1) to minimize the ratio of the
error variance to total variance, var(aTu)/var(aTz).

4. (a) Suppose an observation x ∈ Rp can come from one of two populations, with pro-
bility density functions f1(x) and f2(x), respectively, and with prior probabilities
π1 and π2, where π1 +π2 = 1. Assuming equal costs of misclassification, derive the
classification rule which minimizes the expected cost of misclassification.

(b) If the two populations have Np(µ1, Σ) and Np(µ2, Σ) distributions and π1 = π2,
show that this rule classifies x as coming from the first population if

dT Σ−1x ≥ dT Σ−1µ,

where d = µ1−µ2 and µ = 1
2
(µ1 +µ2), and to the second population otherwise.

(c) Let

Σ =

[
5 1
1 5

]
and µ1 =

[
3
4

]
, µ2 =

[
4
3

]
.

Calculate and sketch the boundary between the two classification regions. How

would you classify x =

[
2
3

]
?

(d) For this example, what is the probability of misclassification for individuals from
population 2?
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