MATH373301

This question paper consists of 3 printed pages, each of which is identified by the reference **MATH3733**.

Only approved basic scientific calculators may be used.

UNIVERSITY OF LEEDS

Examination for the Module MATH3733 (January 2006)

Stochastic Financial Modelling

Time allowed: **3 hours**

Attempt not more than **four** questions. All questions carry equal marks.

1. (a) Explain how to interpret the meaning of the following one-step binomial tree model with interest rate $r = \ln(1.2)$ where stock values are in boxes and transition probabilities are in parentheses,

$$\begin{array}{c}
 150 \\
 (1/3) \\
 100 \\
 (2/3) \\
 100
\end{array}$$

Time in days : 0 1

Define what is called a European call option with strike price \$120 and expiry T = 1, the contract being written at time 0.

Denote by C_T the price that this option will have at expiry. Compute C_T in terms of the price of the asset at expiry, S_T .

Calculate the price C_0 using the equivalent portfolio principle.

- (b) Define the notion of implied probabilities for the model in (a).
 Why they are useful?
 Show that they equal 2/5 for the upper branch, and 3/5 for the lower one.
 Compute again the price C₀, this time using the implied probabilities.
- (c) Suppose in case (a) above, you see on the market a call option at time zero at the price $C_0^* =$ \$40. Show that an arbitrage possibility arises, and construct a portfolio and an algorithm which realize this possibility.

- 2. (a) Write down Itô's formula for the process $f(t, W_t)$ with $f(t, x) = t^3 e^x$, where W_t is a standard Wiener process.
 - (b) Give the definition of a martingale.

It is known that under the Black-Merton-Scholes model, a European call option price $(C_t, t \ge 0)$ is a martingale under the implied probability measure, if the interest rate r = 0. Prove that in this case the price of the European call option with expiry T = 1 and strike price K = 2 can be expressed by the formula,

$$C_0 = \tilde{E}(S_1 - 2)_+,$$

where \tilde{E} denotes the expected value computed under implied probability, and $S_t, t \geq 0$, is a stock price.

(c) Using the formula from (b) above, or otherwise, prove that for the price C_0 from (b) equals the following Gaussian integral,

$$\int_{\ln 2 + 1/2}^{\infty} (e^{x - \frac{1}{2}} - 2) \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx.$$

Calculate this integral in terms of the Laplace function $\Phi(z) := \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$, $-\infty < z < +\infty$.

3. (a) Explain how to interpret the following two-step binomial tree model with interest rate r = 0, where stock values are in boxes and transition probabilities are in parentheses,

Compute the implied probabilities for this model.

- (b) Define what is called a European put option with strike price \$50 and expiry T = 2, the contract being written at time 0. Denote by P_T the price that this option will have at expiry. Calculate the price at zero P_0 using the implied probabilities, or otherwise.
- (c) Suppose in the setting (a)–(b), an insider knows at time zero that the stock price tomorrow will definitely rise. Show that an arbitrage possibility arises at time zero, and construct a portfolio and an algorithm which realize this possibility.
- 4. (a) Let $(W_t, t \ge 0)$ be a Wiener process on an appropriate path space with probability measure P, and define a process $\gamma_t = \exp(-W_t \frac{t}{2}), t \ge 0$. Using either integration for Gaussian integrals, or stochastic differentials, show that

$$E\left(\gamma_t\right) = 1, \quad t > 0.$$

2

- (b) Write down Itô's formula for the process $(W_t + t)\gamma_t$. Hence or otherwise, show that $(W_t + t)\gamma_t$ is a martingale.
- (c) Using the stochastic differential of the process $Z_t = e^{-2W_t+t}$, or otherwise, show that

$$E(Z_t) > 1$$
 for any $t > 0$.

5. (a) Find a solution of the equation,

$$dX_t = \frac{1}{2} X_t dW_t - X_t dt, \ X_0 = 3,$$

where $(W_t, t \ge 0)$ is a standard Wiener process. Hint: the general form for the solution of a linear SDE is $X_t = Ae^{BW_t+Ct}$ with suitable constants A, B, C.

(b) Calculate the variance of the stochastic integral

$$Y_t = \int_0^t e^{W_s - s} \, dW_s$$

Hint: you may either use the properties of stochastic integrals, or, otherwise, compute some Gaussian integral.

(c) Consider the Black-Merton-Scholes model of a stock price,

$$S_t = S_0 \exp\left(-\frac{1}{2}t + \frac{1}{2}W_t\right), \quad 0 \le t \le 1,$$

with drift $\mu = -1/2$, and volatility $\sigma = \frac{1}{2}$, where $(W_t, 0 \le t \le 1)$ is a standard Wiener process. Consider a European call option with expiry T = 1 and strike price K = 1. Assume interest rate r = 1.

Write down the partial differential equation for the price of this call option considered as a function of time t and stock price S at time t.

Hence, or otherwise, explain why the European call option price does not depend on the drift μ .

With the help of an SDE representation or otherwise, compute this price at t = 0, leaving the answer in terms of a Gaussian integral, $c \int_{-7/4}^{\infty} (e^{\frac{1}{2}x + \frac{7}{8}} - 1) \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$.

Compute the value c.

Hint: find the generator of a diffusion under implied probability, solve the corresponding SDE via the Wiener process, and, hence, get the expression for the price via an SDE representation.