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1. (a) Let X = eZ where Z ∼ N (µ, σ2). Using the rule for computing the density,

fX(x) = dP (X ≤ x)/dx, show that the density fX(x) can be represented in the

form,

fX(x) = x−1(2πσ2)−1/2e−(ln x−µ)2/2σ2

, x > 0.

[Hint: events X ≤ x and Z ≤ ln x are equal.]

Using this density or otherwise, show that statistic T (X1, . . . , Xn) =
∑n

i=1 ln Xi

based on observations X1, . . . , Xn, is sufficient for µ if σ2 is given.

Suggest an unbiased estimator for µ based on observations X1, . . . , Xn.

(b) Define Fisher’s information and formulate the Cramér-Rao lower bound for unbi-

ased estimators. Compute the Cramér-Rao lower bound for the parameter µ for

the parametric family introduced in (a); here σ2 is given.

Is this bound attained by any unbiased estimator? Justify your answer.

(c) Define what is meant by a best linear estimator and a best linear unbiased estimator

in the mean square error sense.

State the definition of normal random variable N (µ, σ2) via its density.

Two independent random variables X1, X2 ∼ N (µ, σ2) with known σ2 are given.

Define all linear estimators of µ based on X1 and X2. Show that (X1 + X2)/2 is

the best linear unbiased estimator.

Assuming −1 ≤ µ ≤ 1, show that there is a biased linear estimator of µ which is

strictly better than the best linear unbiased for any µ from this range, in the sense

of the mean square error.

[Hint: consider the mean square error for the statistic α(X1 + X2)/2 for α close to

and slightly less than one.]
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2. (a) Define in detail the notions of the Method of Moments Estimator and the Maxi-

mum Likelihood Estimator for the 1-parametric statistical model (either for con-

tinuous or discrete case, or both).

(b) Find the Estimator of θ for the sample from the uniform distribution U [−θ, 0]

based on Method of Moments. Is it biased? Compute its Mean Square Error using

its density or otherwise. Comment on the rate of convergence.

(c) For the sample X1, . . . , Xn from the distribution U [−θ, 0], compute the density of

X(1) = min(X1, . . . , Xn).

Compute the Maximal Likelihood Estimator for θ ∈ [0, 1]. Is this statistic suffi-

cient? Is it biased? Compute the Mean Square Error of this estimator. Is it less

than or greater than that of the estimator from part (b) of this question?

3. (a) Define the notion of sufficient statistics.

State the Factorization Criterion for sufficient statistics and the Rao-Blackwell

Theorem on improvement of unbiased estimators.

(b) Compute the minimal sufficient statistics for the distribution

Xi =

{
+1, with probability p,

−1, with probability (1− p),

and sample X1, . . . , Xn, p ∈ (0, 1). [Neither an exact proof of minimality, nor the

definition of minimality is required.]

(c) In the model from (b), suggest an unbiased estimator for parameter p ∈ (0, 1)

based on one observation X1.

Show its unbiasedness.

Use the Rao-Blackwell Theorem to improve it, given minimal sufficient statistic

based on two observables X1, X2.

[Hint: show that E(X1|X1 + X2) = (X1 + X2)/2.]

Compare the Mean Square Error of the improved estimator with the Cramér-Rao

lower bound and comment on it.

4. (a) Define in detail the notion of a Bayesian Estimator with the Mean Square Error

criterion. Either for a general model or for any example, explain why E(θ|X) is a

Bayesian Estimator, where X = (X1, . . . , Xn) is a sample.

(b) Consider a sample X = (X1, . . . , Xn) from the Bernoulli distribution, θx(1 −
θ)1−x, x = 0, 1, 0 ≤ θ ≤ 1. Let the prior for θ be q(θ = 1) = q(θ = 0.1) = 1/2.

Compute the Bayesian Estimator and evaluate its Mean Square Error.

(c) State the definition of the Bayesian decision rule in the hypothesis testing problem.

Let H0 : θ = 0.1, H1 : θ = 1. Argue why the decision rule “accept H1 iff X̄ = 1”

is plausible for this hypothesis testing problem.

Is this decision rule Bayesian?

Compute both errors in the classical sense, assuming H0 is the null hypothesis.

Find a sample size n sufficient for the first type error e1 ≤ 0.05.

Find a sample size n sufficient for the Bayesian error eB to be at most 0.05.
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5. (a) State the definition of critical region, and give definitions of first and second type

errors.

Formulate the Neyman-Pearson Lemma.

(b) Let

fθ0(x) =
1

2
e−|x|, fθ1(x) =

1

4
e−
√
|x|.

Show that both functions are densities.

Show that given the sample X1, . . . , Xn, the best test for testing H0 : θ = θ0 vs.

H1 : θ = θ1 can be represented in the form,

n∑

i=1

(
√
|Xi| − 1/2)2 > c.

In the case n = 1, show that the test |X| > 1.96 is the best with significance level

α = 0.05.

[Hint: |a| > 1.4 is equivalent to ||a| − 1/2| > 0.9.]

(c) Describe the notion of confidence interval or set for an unknown parameter.

State the theorem on how to construct most accurate confidence intervals (sets)

based on the Most Powerful Test for testing H0 : θ = θ0.

Given a sample X1, . . . , Xn and
∑n

i=1 Xi = S, from a distribution family F (x− θ)

with unknown location θ = E(X1) and variance σ2 = 1, construct a two-sided

confidence interval with confidence level 1− α for θ ∈ R.

Let H0 : µ = 0, and H1 : µ = 1. Show how to construct a critical region with the

first type error at most α, using this confidence interval.

Let σ = 1, first type error e1 ≈ 0.05, n = 26. What is approximately the second

type error?

Write down the theoretical statement (theorem) which you have used while per-

forming this calculation.

END OF QUESTIONS
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Normal distribution (areas)

Area (α = P (Z > z)) in the tail of the standardized Normal curve, Z ∼ N(0, 1), for different values of

z. Example: Area beyond z = 1.96 (or below z = −1.96) is α = 0.02500. For Normal curve with µ = 10

and σ = 2, area beyond x = 12, say, is the same as the area beyond z =
x− µ

σ
=

12− 10
2

= 1, i.e.

α = 0.15866.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 .50000 .49601 .49202 .48803 .48405 .48006 .47608 .47210 .46812 .46414
0.1 .46017 .45620 .45224 .44828 .44433 .44038 .43644 .43251 .42858 .42465
0.2 .42074 .41683 .41294 .40905 .40517 .40129 .39743 .39358 .38974 .38591
0.3 .38209 .37828 .37448 .37070 .36693 .36317 .35942 .35569 .35197 .34827
0.4 .34458 .34090 .33724 .33360 .32997 .32636 .32276 .31918 .31561 .31207
0.5 .30854 .30503 .30153 .29806 .29460 .29116 .28774 .28434 .28096 .27760
0.6 .27425 .27093 .26763 .26435 .26109 .25785 .25463 .25143 .24825 .24510
0.7 .24196 .23885 .23576 .23270 .22965 .22663 .22363 .22065 .21770 .21476
0.8 .21186 .20897 .20611 .20327 .20045 .19766 .19489 .19215 .18943 .18673
0.9 .18406 .18141 .17879 .17619 .17361 .17106 .16853 .16602 .16354 .16109
1.0 .15866 .15625 .15386 .15151 .14917 .14686 .14457 .14231 .14007 .13786
1.1 .13567 .13350 .13136 .12924 .12714 .12507 .12302 .12100 .11900 .11702
1.2 .11507 .11314 .11123 .10935 .10749 .10565 .10383 .10204 .10027 .09853
1.3 .09680 .09510 .09342 .09176 .09012 .08851 .08692 .08534 .08379 .08226
1.4 .08076 .07927 .07780 .07636 .07493 .07353 .07215 .07078 .06944 .06811
1.5 .06681 .06552 .06426 .06301 .06178 .06057 .05938 .05821 .05705 .05592
1.6 .05480 .05370 .05262 .05155 .05050 .04947 .04846 .04746 .04648 .04551
1.7 .04457 .04363 .04272 .04182 .04093 .04006 .03920 .03836 .03754 .03673
1.8 .03593 .03515 .03438 .03362 .03288 .03216 .03144 .03074 .03005 .02938
1.9 .02872 .02807 .02743 .02680 .02619 .02559 .02500 .02442 .02385 .02330
2.0 .02275 .02222 .02169 .02118 .02068 .02018 .01970 .01923 .01876 .01831
2.1 .01786 .01743 .01700 .01659 .01618 .01578 .01539 .01500 .01463 .01426
2.2 .01390 .01355 .01321 .01287 .01255 .01222 .01191 .01160 .01130 .01101
2.3 .01072 .01044 .01017 .00990 .00964 .00939 .00914 .00889 .00866 .00842
2.4 .00820 .00798 .00776 .00755 .00734 .00714 .00695 .00676 .00657 .00639
2.5 .00621 .00604 .00587 .00570 .00554 .00539 .00523 .00508 .00494 .00480
2.6 .00466 .00453 .00440 .00427 .00415 .00402 .00391 .00379 .00368 .00357
2.7 .00347 .00336 .00326 .00317 .00307 .00298 .00289 .00280 .00272 .00264
2.8 .00256 .00248 .00240 .00233 .00226 .00219 .00212 .00205 .00199 .00193
2.9 .00187 .00181 .00175 .00169 .00164 .00159 .00154 .00149 .00144 .00139
3.0 .00135 .00131 .00126 .00122 .00118 .00114 .00111 .00107 .00104 .00100
3.1 .00097 .00094 .00090 .00087 .00084 .00082 .00079 .00076 .00074 .00071
3.2 .00069 .00066 .00064 .00062 .00060 .00058 .00056 .00054 .00052 .00050
3.3 .00048 .00047 .00045 .00043 .00042 .00040 .00039 .00038 .00036 .00035
3.4 .00034 .00032 .00031 .00030 .00029 .00028 .00027 .00026 .00025 .00024
3.5 .00023 .00022 .00022 .00021 .00020 .00019 .00019 .00018 .00017 .00017
3.6 .00016 .00015 .00015 .00014 .00014 .00013 .00013 .00012 .00012 .00011
3.7 .00011 .00010 .00010 .00010 .00009 .00009 .00008 .00008 .00008 .00008
3.8 .00007 .00007 .00007 .00006 .00006 .00006 .00006 .00005 .00005 .00005
3.9 .00005 .00005 .00004 .00004 .00004 .00004 .00004 .00004 .00003 .00003
4.0 .00003 .00003 .00003 .00003 .00003 .00003 .00002 .00002 .00002 .00002

α 0.4 0.25 0.2 0.15 0.1 0.05 0.025 0.01 0.005 0.001
zα 0.2533 0.6745 0.8416 1.0361 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902
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Percentage Points of the t-Distribution

The table gives the value a, such that P (T < a) = p where T is a random variable from
a t-distribution with ν degrees of freedom. Example: P (T < 2.093) = 0.975, where T has 19
d.o.f.

p 0.75 0.90 0.95 0.975 0.99 0.995 0.9995
ν 1 1.000 3.078 6.314 12.706 31.821 63.656 636.578

2 0.816 1.886 2.920 4.303 6.965 9.925 31.600
3 0.765 1.638 2.353 3.182 4.541 5.841 12.924
4 0.741 1.533 2.132 2.776 3.747 4.604 8.610
5 0.727 1.476 2.015 2.571 3.365 4.032 6.869
6 0.718 1.440 1.943 2.447 3.143 3.707 5.959
7 0.711 1.415 1.895 2.365 2.998 3.499 5.408
8 0.706 1.397 1.860 2.306 2.896 3.355 5.041
9 0.703 1.383 1.833 2.262 2.821 3.250 4.781

10 0.700 1.372 1.812 2.228 2.764 3.169 4.587
11 0.697 1.363 1.796 2.201 2.718 3.106 4.437
12 0.695 1.356 1.782 2.179 2.681 3.055 4.318
13 0.694 1.350 1.771 2.160 2.650 3.012 4.221
14 0.692 1.345 1.761 2.145 2.624 2.977 4.140
15 0.691 1.341 1.753 2.131 2.602 2.947 4.073
16 0.690 1.337 1.746 2.120 2.583 2.921 4.015
17 0.689 1.333 1.740 2.110 2.567 2.898 3.965
18 0.688 1.330 1.734 2.101 2.552 2.878 3.922
19 0.688 1.328 1.729 2.093 2.539 2.861 3.883
20 0.687 1.325 1.725 2.086 2.528 2.845 3.850
21 0.686 1.323 1.721 2.080 2.518 2.831 3.819
22 0.686 1.321 1.717 2.074 2.508 2.819 3.792
23 0.685 1.319 1.714 2.069 2.500 2.807 3.768
24 0.685 1.318 1.711 2.064 2.492 2.797 3.745
25 0.684 1.316 1.708 2.060 2.485 2.787 3.725
26 0.684 1.315 1.706 2.056 2.479 2.779 3.707
27 0.684 1.314 1.703 2.052 2.473 2.771 3.689
28 0.683 1.313 1.701 2.048 2.467 2.763 3.674
29 0.683 1.311 1.699 2.045 2.462 2.756 3.660
30 0.683 1.310 1.697 2.042 2.457 2.750 3.646
40 0.681 1.303 1.684 2.021 2.423 2.704 3.551
50 0.679 1.299 1.676 2.009 2.403 2.678 3.496
60 0.679 1.296 1.671 2.000 2.390 2.660 3.460
70 0.678 1.294 1.667 1.994 2.381 2.648 3.435
80 0.678 1.292 1.664 1.990 2.374 2.639 3.416
90 0.677 1.291 1.662 1.987 2.368 2.632 3.402

100 0.677 1.290 1.660 1.984 2.364 2.626 3.390
120 0.677 1.289 1.658 1.980 2.358 2.617 3.373
∞ 0.674 1.282 1.645 1.960 2.326 2.576 3.291
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