MATH371301

© C UNIVERSITY OF LEEDS

Examination for the Module MATH3713
(January 2006)

Regression and Smoothing

Time allowed: 3 hours
Attempt not more than FOUR questions.
All questions carry equal marks.

1. The multiple linear regression model involving n observations and k explanatory variables can be written in the form

$$
y_{i}=\beta_{0}+\sum \beta_{j} x_{i j}+\epsilon_{i} .
$$

(a) Explain each of the terms in this model, the assumptions on the $\left\{\epsilon_{i}\right\}$ and the ranges for the indices i and j.
(b) The maximum likelihood estimator of the regression parameter $\boldsymbol{\beta}$ can be written in matrix form as $\hat{\boldsymbol{\beta}}=C X^{T} \boldsymbol{y}$. Verify this formula, taking care to define and give the dimensions of C, X and \boldsymbol{y}.
(c) A scientist wishes to explore the dependence of January rainfall (in mm) on mean January temperature in Leeds (in ${ }^{\circ} \mathrm{C}$) by fitting a simple linear regression $(k=1)$ using 20 years of measurements. He obtains estimated regression coefficients $\hat{\beta}_{0}=$ 10.2 and $\hat{\beta}_{1}=2.4$, with estimated standard deviations 2.2 and 1.3 , respectively.
(i) Find the associated t-statistic for $\hat{\beta}_{1}$. Describe what hypothesis can be tested with this t-statistic and state what conclusions can be reached in this example.
(ii) A second scientist repeats the analysis on the same dataset but in different units, using inches for rainfall and ${ }^{\circ} \mathrm{F}$ for temperature. Give the new values of the estimated regression coefficients, and give the new standard error and t-statistic for $\hat{\beta}_{1}$. What effect does this change in units have on the conclusion reached in part (i)?
[Hints: (1) Note that 1 inch equals 25.4 mm . (2) If C denotes a temperature on the Celsius scale $\left({ }^{\circ} \mathrm{C}\right)$, then the corresponding value F on the Fahrenheit scale $\left({ }^{\circ} \mathrm{F}\right)$ is given by $F=32+(9 / 5) C$. (3) The following R output gives some upper 2.5% critical values for the t-distribution.]
round(qt(.975,c(15, 16, 17, 18, 19, 20)) , 3)
[1] 2.1312 .1202 .1102 .1012 .0932 .086

MATH3713

2. The following R output gives the result of fitting a multiple linear regression model. Here $y, x 1, x 2$ are all numeric vectors of the same length.
```
> lm1=lm( y x x1+x2)
> summary(lm1)
Call:
lm(formula = y ~ x1 + x2)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-1.8942 & -0.5667 & 0.1963 & 0.7334 & 1.7128
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.2684 0.9637 -0.279 0.787
x1 3.2793 0.3328 A 4.04e-06
x2 1.8909 0.2319 8.153 1.90e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.263 on 9 degrees of freedom
Multiple R-Squared: 0.9913, Adjusted R-squared: B
F-statistic: 511.6 on 2 and 9 DF, p-value: 5.395e-10
> anova(lm1)
Analysis of Variance Table
Response: y
    Df Sum Sq Mean Sq F value Pr (>F)
x1 1 1525.50 1525.50 956.803 1.890e-10 ***
x2 1 105.98 105.98 C 1.902e-05 ***
Residuals D 14.35 1.59
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
```

(a) In this R output, 4 entries labelled $\mathrm{A}-\mathrm{D}$ are missing. Give these values. Also give the sample size of the dataset and the values of $S S_{T}, S S_{R}, S S_{E}$, the "total", "regression" and "error" sums of squares, respectively.
(b) For the multiple linear regression model, give the definitions for the three types of residuals e_{i}, r_{i}, and t_{i} (raw, standardized and studentized, respectively).
(c) The statistic DFFITS $_{i}$ is defined by

$$
\operatorname{DFFITS}_{i}=\left(\hat{y}_{i}-\hat{y}_{i,-i}\right) /\left(\hat{\sigma}_{-i} \sqrt{h_{i i}}\right) .
$$

Explain this notation and motivate the definition.
It is known that DFFITS_{i} can also be written in the form

$$
\operatorname{DFFITS}_{i}=\left(\frac{h_{i i}}{1-h_{i i}}\right)^{1 / 2} t_{i} .
$$

Using the second representation, explain how this statistic combines the effects of leverage and outlyingness.
If $h_{11}=0.2$ and $t_{1}=6$ for the dataset in (a), what conclusions would you draw?
3. Consider a multiple linear regression model with $k>1$ regressor variables x_{1}, \ldots, x_{k} on n observations.
(a) Why is variable selection an important problem? Explain the method of forward search, describing, in particular, how new variables are added during the algorithm.
(b) Consider a hypothesis test to compare the models

$$
M_{0}: y \sim x_{1} \text { vs. } M_{1}: y \sim x_{1}+x_{2} .
$$

Using the error sum of squares for the two models (labelled $S S_{E}(1)$ and $S S_{E}(1,2)$, say), show how an F statistic with 1 and $n-3$ degrees of freedom can be constructed to carry out the test.
(c) In a dataset involving a response variable y and three possible regressor variables x_{1}, x_{2}, x_{3} on $n=25$ observations, the following table lists the error sums of squares $\left(S S_{E}\right)$ for a collection of models. The entry under "Model" lists the regressor variables in the model. For the top row, only an intercept is present.

Model $\quad S S_{E}$

- 88
$1 \quad 52$
248
382
1246
$13 \quad 29$
$23 \quad 24$
$123 \quad 18$
Carry out one step of forwards search and backwards elimination on this dataset, and compare the models chosen in each case.
[Hint: The following R output gives some upper 5% critical values for the F distribution.]

```
> round(qf(.95,1,c(20,21,22,23,24,25)),2)
[1] 4.354 .324 .304 .284 .264 .24
```

4. (a) Consider the family of transformations indexed by a real parameter λ, defined by

$$
f_{\lambda}(x)=\frac{x^{\lambda}-1}{\lambda}, \quad x>0, \quad \lambda \neq 0
$$

and by

$$
f_{0}(x)=\log (x), \quad x>0 .
$$

Show that for $\lambda<1, f_{\lambda}(x)$ is increasing and concave in $x>0$ with $f^{\prime}(1)=1$. What happens if $\lambda>1$?
(b) Suppose that in a regression analysis of a real-valued response variable y on a realvalued explanatory variable x, a plot of y vs. x suggests that y is approximately a decreasing convex function of x. Discuss (i) conditions under which applying the transformation in (a) to y or x might be useful, (ii) what values of λ might be appropriate, (iii) why such a transformation might be useful, and (iv) how you might assess the suitability of a particular transformation.
(c) In a study to investigate the effectiveness of slug pellets, various dosages ($x=$ number of pellets per square metre) were sprinkled on a selection of identicallysized English country gardens one evening, and the numbers (y) of dead slugs the next morning were counted. A plot of y vs. x is given in Figure 1. There were three replications at each of 4 doses, so $n=12$.
A statistician considers three models $M_{1}: y \sim x, M_{2}: y \sim x^{1 / 3}$ and $M_{3}: y \sim$ $x+x^{1 / 3}$. On the basis of the information in the following R output, investigate which of the models seems to be most appropriate.

```
> x
    [1] 25 25 25 50 50 50 100 100 100 200 200 200
> y
    [1] 332 295 330 337 284 395 545 457 426 560 464 564
> lm1=lm(y~x)
> summary(lm1)
Call:
lm(formula = y ~ x)
Residuals:
    Min 1Q Median 3Q Max
-84.609 -26.728 2.326 19.902 121.435
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 298.5217 28.1999 10.59 9.41e-07
x 1.2504 0.2447 5.11 0.000457 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Figure 1: Plot for Question 4: numbers of dead slugs vs. dosage of slug pellets.

```
Residual standard error: 56.81 on 10 degrees of freedom
Multiple R-Squared: 0.7231, Adjusted R-squared: 0.6954
F-statistic: 26.11 on 1 and 10 DF, p-value: 0.0004572
> x3=x^(1/3)
> lm2=lm(y~ x3)
> summary(lm2)
Call:
lm(formula = y ~ x3)
Residuals:
    Min 1Q Median 3Q Max
-85.22 -22.07 16.26 23.07 100.31
```

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 78.84 60.98 1.293 0.225160
x3 78.82 13.82 5.703 0.000198
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 52.36 on 10 degrees of freedom
Multiple R-Squared: 0.7648, Adjusted R-squared: 0.7413
F-statistic: 32.52 on 1 and 10 DF, p-value: 0.0001976
> lm3=lm(y~x+x3)
> summary(lm3)
Call:
lm(formula = y ~ x + x3)
Residuals:
\begin{tabular}{rrrr} 
Min & 1Q Median & 3Q & Max \\
-88.50 & -27.67 & 14.22 & 26.25 \\
93.94
\end{tabular}
Coefficients:
\begin{tabular}{lrrrr} 
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & 13.0818 & 219.8512 & 0.060 & 0.954 \\
x & -0.4015 & 1.2845 & -0.313 & 0.762 \\
x3 & 103.0109 & 78.7292 & 1.308 & 0.223
\end{tabular}
Residual standard error: 54.89 on 9 degrees of freedom
Multiple R-Squared: 0.7674, Adjusted R-squared: 0.7157
F-statistic: 14.84 on 2 and 9 DF, p-value: 0.001413
```

5. Given data points $x_{1}<\cdots<x_{n}$ and a bandwidth parameter $h>0$, the kernel density estimate (KDE) is defined by the function

$$
\hat{f}_{h}(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\left(x-x_{i}\right) / h\right) .
$$

(a) What regularity conditions are usually assumed for the kernel $K(\cdot)$ and what probability model is usually assumed for the data? Make these assumptions for the remainder of the question.
(b) Find the limit of the $\hat{f}_{h}(x)$ as $n \rightarrow \infty$ for fixed h and x.
(c) For fixed data and assuming $x=x_{i}$ for some $i=1, \ldots, n$, so that x equals one of
the data points, show that

$$
\begin{aligned}
& \hat{f}_{h}(x) \rightarrow \infty \text { as } h \rightarrow 0, \text { and } \\
& \hat{f}_{h}(x) \rightarrow 0 \text { as } h \rightarrow \infty
\end{aligned}
$$

What is the significance of these results for data analysis?
(d) In the asymptotic theory of kernel density estimation, under the conditions $n \rightarrow \infty$, $h \rightarrow 0$ and $n h \rightarrow \infty$, it can be shown that the bias and variance of $\hat{f}_{h}(x)$ for fixed x can be approximated by

$$
\frac{h^{2}}{2} A(x) \text { and }(n h)^{-1} B(x)
$$

for certain functions $A(x)$ and $B(x)$, where $B(x)>0$. Using these results describe the asymptotic behaviour of the mean squared error of $\hat{f}_{h}(x)$ for fixed x under the following settings:
(i) $h=n^{-4 / 5}$,
(ii) $h=n^{-1 / 5}$,
(iii) $h=n^{-1 / 10}$.

Assuming $A(x) \neq 0$, show that choice (ii) is better than the others. Find a constant c (depending on x) such that $h=c h^{-1 / 5}$ gives an improvement on choice (ii).

