© UNIVERSITY OF LEEDS

Examination for the Module MATH3531
(January 2005)

Cosmology

Time allowed: 2 hours
Attempt not more than FOUR questions.
All questions carry equal marks.
[You may assume the following:
The special relativistic Lorentz transformations for two inertial frames in standard configuration with relative speed v are

$$
\left.x^{\prime}=\gamma(x-v t), \quad y^{\prime}=y, \quad z^{\prime}=z, \quad t^{\prime}=\gamma\left(t-x v / c^{2}\right), \text { where } \gamma \equiv\left(1-v^{2} / c^{2}\right)^{-\frac{1}{2}}\right]
$$

The Friedmann equations, where all terms have their usual meanings, are

$$
H^{2}=\left(\frac{\dot{R}}{R}\right)^{2}=\frac{8}{3} G \pi \rho-\frac{k c^{2}}{R^{2}}+\frac{1}{3} \Lambda, \quad \frac{\ddot{R}}{R}=-\frac{4}{3} \pi G\left(\rho+3 \frac{p}{c^{2}}\right)+\frac{1}{3} \Lambda .
$$

Dots denote differentiation with respect to time t.]

1. (a) Two bodies A and B have masses M_{A} and M_{B}, and the distance between them is a fixed value $r_{A B}$. Show that the stagnation point S between them at which a particle is equally attracted to both is at a distance $r_{A S}$ from A where

$$
r_{A S}=\frac{r_{A B}}{1+\left(M_{B} / M_{A}\right)^{\frac{1}{2}}} .
$$

Show that this position of equilibrium is unstable. Find the value of $r_{E S} / r_{E \mu}$ for the Earth-Moon $(E-\mu)$ system given that $M_{E}=5.98 \times 10^{24} \mathrm{~kg}$ and $M_{\mu}=7.336 \times$ $10^{22} \mathrm{~kg}$.
(b) A photon is projected vertically upwards from a point A and moves in a constant gravitational field, whose acceleration is g, to a point B at a height L above A. Using a crude calculation involving only special relativity and quantum mechanics, find a relation between the frequencies ν_{A} and ν_{B} at A and B respectively. What happens to the colour of the light in rising from A to B ?
2. (a) A source of monochromatic light with rest wavelength λ_{E} and rest frequency ν_{E} is moving radially with speed v relative to an observer O. If λ_{O} is the wavelength, and ν_{O} is the frequency, observed by O, show that these quantities are related by

$$
\frac{\lambda_{O}}{\lambda_{E}}=\frac{\nu_{E}}{\nu_{O}}=\sqrt{\frac{1+\frac{v}{c}}{1-\frac{v}{c}}} .
$$

Show that the corresponding non-relativistic limit is

$$
\frac{\lambda_{O}}{\lambda_{E}}=\frac{\nu_{E}}{\nu_{O}}=1+\frac{v}{c}
$$

The Cassini - Huygens spacecraft arrived at the planet Saturn in July 2004. The system will release the probe Huygens to explore Saturn's moon Titan in January 2005, and the data obtained from this probe will be sent to Earth by first relaying it to Cassini. Because of the relative speed between Cassini and Huygens, the frequency ν_{O} of the signals received at Cassini must differ from the emitting frequency ν_{E} at Huygens. However, last minute inflight tests have shown that ν_{E} has been wrongly set to ν_{E}^{\prime}, so that data from Huygens would be lost at the proposed relative speed. NASA scientists have decided that data transfer could be accomplished by altering this proposed relative speed. Assuming that all relative motion is radial and that the non-relativistic approximation applies, calculate the change in relative speed necessary to achieve communication.
(b) The frequency $\nu_{\text {peak }}$ corresponding to the peak of the energy distribution of blackbody radiation at temperature T is given approximately by $\nu_{p e a k} \approx 2.8 k_{B} T / h$ where k_{B} is Boltzmann's constant and h is Planck's constant. This implies that the quantity $\nu_{p e a k} / T$ is a constant. Evaluate this constant, clearly stating the units. The Sun radiates approximately as a blackbody with $T_{\text {Sun }} \approx 5800 \mathrm{~K}$. Evaluate $\nu_{\text {peak }}$ for solar radiation. [Take $k_{B}=1.381 \times 10^{-23} \mathrm{JK}^{-1}$ and $h=6.626 \times 10^{-34} \mathrm{Js}$.]
3. A uniform gas of volume V at pressure p undergoes a reversible expansion.
(i) Show, using a simple example of a gas expanding in a cylinder of constant cross section, that the rate of change of energy is $\dot{E}=-p \dot{V}$.
(ii) The density of material in the universe is ρ and the pressure is p. Using the energy - mass relation from special relativity, derive the fluid equation

$$
\dot{\rho}+\frac{3 \dot{R}}{R}\left(\rho+\frac{p}{c^{2}}\right)=0
$$

where R is the scale factor of the universe. How does this result differ from its counterpart derived without taking special relativity into account?
(iii) The pressure-density relation for an ideal quantum gas is given by $p=$ $g \rho c^{2}$ where g is a constant. Use the fluid equation to show that $\rho R^{3(1+g)}$ is a constant in time.
(iv) The universe has a scale factor $R=R_{1}$ and density $\rho=\rho_{1}$ at some initial time t_{1}. If the universe is treated as an ideal quantum gas and $(k=0, \Lambda=0)$, show that

$$
R=\left(R_{1}^{\frac{3}{2}(1+g)} \pm A\left(t-t_{1}\right)\right)^{\frac{2}{3(1+g)}}
$$

2 QUESTION 3 CONTINUED...
where

$$
A \equiv \frac{3}{2}(1+g)\left(\frac{8}{3} \pi G \rho_{1} R_{1}^{3(1+g)}\right)^{\frac{1}{2}}
$$

What is the significance of the $\pm \operatorname{sign}$?
4. (a) Define the deceleration parameter q_{2}. Explain why this definition is a more satisfactory definition than the quantity $-\ddot{R}$. Show that

$$
q_{2}=\frac{1}{H^{2}}\left[\frac{4 \pi G}{3}\left(\rho+\frac{3 p}{c^{2}}\right)-\frac{1}{3} \Lambda\right]
$$

An ideal quantum gas has a pressure-density relation in the form $p=g \rho c^{2}$ where g is a positive constant. What is the relationship between Λ and ρ in this case if the rate of expansion of the universe is found to be increasing?
(b) In the case of dust and $\Lambda=0$, you may assume that the Friedmann equations may be written

$$
\dot{R}^{2}=\frac{Q}{R}-k c^{2}, \quad \ddot{R}=-\frac{4 \pi G}{3} R \rho_{d}
$$

where ρ_{d} is the dust density and $Q \equiv(8 \pi / 3) G R^{3} \rho_{d}$ is a constant. Define a new variable $u \equiv \sqrt{c^{2} R / Q}$. Show that, during the present expansion phase,

$$
H=\frac{c^{3}}{Q u^{3}} \sqrt{1-k u^{2}} \quad \text { and } \quad q_{2}=\frac{1}{2\left(1-k u^{2}\right)}
$$

Assuming that $R=0$ at time $t=0$, show that the age of the universe is

$$
t=\frac{Q}{c^{3}} I_{k}(u)
$$

where

$$
I_{k}(u) \equiv 2 \int_{0}^{u} \frac{x^{2}}{\sqrt{1-k x^{2}}} d x
$$

Evaluate t in terms of the Hubble time $t_{H} \equiv 1 / H$ for the case $k=0$.
5. (a) You may assume for the case of zero pressure that the Friedmann equations can be written

$$
\ddot{R}=-\frac{Q}{2 R^{2}}+\frac{1}{3} \Lambda R, \quad \dot{R}^{2}=\frac{Q}{R}-k c^{2}+\frac{1}{3} \Lambda R^{2}
$$

where Q is a positive constant. On defining

$$
R^{*} \equiv \frac{3 Q}{2 c^{2}}, \quad \Lambda^{*} \equiv \frac{4 c^{6}}{9 Q^{2}}
$$

show that the Friedmann equations can be written in the form

$$
\ddot{x}=\frac{\beta}{x^{2}}\left(\alpha x^{3}-1\right), \quad \dot{x}^{2}=\frac{\beta}{x}\left(2+\alpha x^{3}-3 k x\right),
$$

where $x \equiv R / R^{*}, \alpha \equiv \Lambda / \Lambda^{*}$ and $\beta \equiv \Lambda^{*} / 3$.
(b) Obtain expressions for H and q_{2} as functions of x. Use these results to show that
(i) In models with $\Lambda<0$ the scale factor R reaches a maximum value, and that $q_{2}>0$;
(ii) In Einstein's model of a static universe, $R=R^{*}$ and $\Lambda=\Lambda^{*}$.

END

