MATH 343301

Only approved basic scientific calculators may be used.

© CONIVERSITY OF LEEDS

Examination for the Module MATH 3433
(January 2007)

Electromagnetism

Time allowed: 3 hours

Do not answer more than FOUR questions. All questions carry equal weight.

The following vector identities may be helpful.
For vector fields \mathbf{a} and \mathbf{b} and a scalar field f :

$$
\begin{aligned}
& \nabla \times(\nabla \times \mathbf{a})=\nabla(\nabla \cdot \mathbf{a})-\nabla^{2} \mathbf{a} \\
& \nabla \cdot(f \mathbf{a})=f(\nabla \cdot \mathbf{a})+\mathbf{a} \cdot \nabla f \\
& \nabla \times(f \mathbf{a})=\nabla f \times \mathbf{a}+f \nabla \times \mathbf{a} \\
& \nabla \times(\mathbf{a} \times \mathbf{b})=(\mathbf{b} \cdot \nabla) \mathbf{a}-\mathbf{b}(\nabla \cdot \mathbf{a})-(\mathbf{a} \cdot \nabla) \mathbf{b}+\mathbf{a}(\nabla \cdot \mathbf{b})
\end{aligned}
$$

1. State clearly Coulomb's law describing the force between two electric point charges at rest. Explain how the idea of an electric field is related to the force exerted by a distribution of electric charges.

State the relation between the electric field \mathbf{E} and the electrostatic potential ϕ.
Write down the electric field due to a point charge q situated at the origin, and hence write down the electrostatic potential.

A point charge q is located at the point $(0,0, h)$ (in Cartesian coordinates) above an infinite plane conductor located at $z=0$ and maintained at zero potential. Use the method of images to calculate the potential in the region $z>0$. Calculate the electric field in $z>0$ and sketch the field lines. Explain how the surface charge density σ on the surface $z=0$ is related to the electric field. Hence calculate σ. Check your answer by integrating σ over the surface $z=0$.

Now suppose that a point charge is placed at an arbitrary position within a wedgeshaped region, the walls of which are perfect conductors maintained at zero potential, subtend an angle of $\pi / 3$ and extend to infinity. Draw a sketch to show where the image charges should be placed in order to solve this problem by the method of images.
2. A spatially bounded charge distribution occupying a volume V has charge density ρ and electric scalar potential ϕ. Show that the electrostatic energy W can be written as

$$
\begin{equation*}
W=\frac{1}{2} \int_{V} \rho \phi d V . \tag{1}
\end{equation*}
$$

Show, by using the equations of electrostatics, that this may be written as

$$
\begin{equation*}
W=\frac{\epsilon_{0}}{2} \int \mathbf{E}^{2} d V \tag{2}
\end{equation*}
$$

where the integral is taken over all space.
Total charge Q is uniformly distributed throughout the spherical annulus $a<r<$ b. Explain why the electric field takes the form $\mathbf{E}=(E(r), 0,0)$ in spherical polar coordinates. State Gauss's law. Use it to calculate E in the three regions $r<a$, $a<r<b$ and $r>b$. Hence show that the potential ϕ is given by:

$$
\begin{aligned}
\phi & =\frac{Q}{4 \pi \epsilon_{0} r} \text { for } r>b ; \\
\phi & =\frac{Q}{8 \pi \epsilon_{0}\left(b^{3}-a^{3}\right)}\left(3 b^{2}-r^{2}-\frac{2 a^{3}}{r}\right) \text { for } a<r<b ; \\
\phi & =\frac{3 Q}{8 \pi \epsilon_{0}\left(b^{3}-a^{3}\right)}\left(b^{2}-a^{2}\right) \text { for } r<a .
\end{aligned}
$$

Use either expression (1) or expression (2) to show that the electrostatic energy is given by

$$
W=\frac{3 Q^{2}\left(2 b^{5}-5 b^{2} a^{3}+3 a^{5}\right)}{40 \pi \epsilon_{0}\left(b^{3}-a^{3}\right)^{2}} .
$$

3. What is the physical significance of the equation

$$
\begin{equation*}
\nabla \cdot \mathbf{B}=0 \tag{1}
\end{equation*}
$$

where \mathbf{B} is the magnetic field? Explain how the result (1) implies the existence of a vector potential A. Explain why the vector potential is not uniquely defined.
Write down the equation governing the magnetic field and the current density \mathbf{j} for the case of steady current flow. Show that, under a certain condition on A, which should be stated, \mathbf{A} and \mathbf{j} are related by the equation

$$
\begin{equation*}
\nabla^{2} \mathbf{A}=-\mu_{0} \mathbf{j} \tag{2}
\end{equation*}
$$

Suppose that a steady current flows in a bounded conductor occupying a volume V. By comparison of (2), in Cartesian coordinates, with a similar equation that arises in electrostatics, show that the vector potential \mathbf{A} at a point P with position vector \mathbf{r}, lying outside V, is given by

$$
\mathbf{A}=\frac{\mu_{0}}{4 \pi} \int_{V} \frac{\mathbf{j}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}^{\prime}-\mathbf{r}\right|} d^{3} \mathbf{r}^{\prime}
$$

Hence show that the magnetic field \mathbf{B} at P is given by

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0}}{4 \pi} \int_{V} \frac{\left(\mathbf{r}^{\prime}-\mathbf{r}\right) \times \mathbf{j}}{\left|\mathbf{r}^{\prime}-\mathbf{r}\right|^{3}} d^{3} \mathbf{r}^{\prime} . \tag{3}
\end{equation*}
$$

If the current flows only in a closed wire loop C, with line element ds, and has constant magnitude I, show that equation (3) becomes

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0} I}{4 \pi} \oint_{C} \frac{\left(\mathbf{r}^{\prime}-\mathbf{r}\right) \times \mathbf{d s}}{\left|\mathbf{r}^{\prime}-\mathbf{r}\right|^{3}} . \tag{4}
\end{equation*}
$$

A steady current I flows round a circular wire loop of radius a, centred at the origin and located in the plane $z=0$. Using expression (4), show that the magnetic field at the point with coordinates $(0,0, z)$ is

$$
\mathbf{B}=\frac{\mu_{0} I a^{2}}{2\left(a^{2}+z^{2}\right)^{3 / 2}} \hat{\mathbf{z}} .
$$

4. State Ohm's law relating the current and the electric field in a conductor. Use Maxwell's equations to deduce that in a conductor with permittivity ϵ, permeability μ and conductivity σ (all constants):

$$
\nabla^{2} \mathbf{B}=\mu \sigma \frac{\partial \mathbf{B}}{\partial t}+\mu \epsilon \frac{\partial^{2} \mathbf{B}}{\partial t^{2}} .
$$

A plane electromagnetic wave with electric and magnetic fields given, in complex notation, by

$$
\mathbf{E}=\mathbf{E}_{0} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}, \quad \mathbf{B}=\mathbf{B}_{0} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}
$$

travels through such a conductor. Show that ω and $k(=|\mathbf{k}|)$ are related by the expression

$$
k^{2}=\epsilon \mu \omega^{2}\left(1+\frac{i \sigma}{\epsilon \omega}\right) .
$$

By obtaining an approximate expression for k for the case of a very poor conductor ($\sigma \ll \epsilon \omega$), show that, to first order, the attenuation of waves in a poor conductor is independent of frequency. Now obtain the leading order approximation for k for the case of a good conductor $(\sigma \gg \epsilon \omega)$. Hence show that the skin depth δ is given by

$$
\delta=\sqrt{\frac{2}{\mu \sigma \omega}} .
$$

5. Show, from Maxwell's equations, that in free space the electric field \mathbf{E} and the magnetic field \mathbf{B} satisfy the wave equation, namely

$$
\frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=c^{2} \nabla^{2} \mathbf{E}, \quad \frac{\partial^{2} \mathbf{B}}{\partial t^{2}}=c^{2} \nabla^{2} \mathbf{B}
$$

where c is the speed of light.
A plane electromagnetic wave is normally incident from free space, occupying the halfspace $z<0$, onto the plane face of a semi-infinite block of glass, with permittivity ϵ_{1} and permeability μ_{1}, occupying the half-space $z>0$. The electric field in $z<0$ consists of an incident and reflected wave in the form

$$
\mathbf{E}=\left(I e^{i\left(k_{0} z-\omega t\right)}+R e^{i\left(-k_{0} z-\omega t\right)}\right)(1,0,0)
$$

The transmitted wave in $z>0$ takes the form

$$
\mathbf{E}=\left(T e^{i\left(k_{1} z-\omega t\right)}\right)(1,0,0)
$$

What is the relation between k_{0} and ω and between k_{1} and ω ? Use Faraday's law to calculate the magnetic field in $z<0$ and $z>0$. Derive the boundary conditions that \mathbf{E} and \mathbf{H} must satisfy on $z=0$, assuming there is no surface charge or surface current. Use these to obtain the ratios T / I and R / I in terms of $\epsilon_{0}, \epsilon_{1}, \mu_{0}$ and μ_{1}.

END

