MATH-326301

This question paper consists of 3 printed pages, each of which is identified by the reference MATH-326301

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-3263
(May/June 2004)

HILBERT SPACES

Time allowed: 3 hours

Answer four questions.
All questions carry equal marks.

1. (a) Write down the axioms for a metric (distance function) on a set.

Write down the axioms for a norm 0n a complex vector space.
Show that any norm produces a metric in a vector space.
Give examples of two different norms on the vector space \mathbb{R}^{2}.
Give an example of a metric on the vector space \mathbb{R}^{2} which is not generated by a norm.
(b) What is meant by saying that a sequence $\left(e_{n}\right)$ in an inner-product space is orthonormal?

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a finite orthonormal set in an inner-product space E and let M be the subspace $\operatorname{Lin}\left\{e_{1}, \ldots, e_{n}\right\}$. Let $x \in E$, and let $y=\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i}$. Show that $x-y \in M^{\perp}$ and derive Bessel's inequality.

Show that the functions e_{n} for $n \in \mathbb{Z}$, defined by $e_{n}(t)=\frac{1}{\sqrt{2 \pi}} e^{i n t}$, are orthonormal with respect to a certain inner product defined on $C[-\pi, \pi]$, which should be specified.

Show that

$$
\int_{-\pi}^{\pi} f(t) e^{-i n t} d t \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

for all $f \in C[-\pi, \pi]$.
2. (a) Let Y be a linear subspace of a normed space X. Prove the following:
(i) If Y is complete, then Y is a closed subspace.
(ii) \bar{Y}, the closure of Y, is also a linear subspace of X.

Give an example of an incomplete inner-product space, and prove that it is incomplete.
(b) State and prove the Cauchy-Schwarz inequality for two vectors x, y in a complex innerproduct space. Prove that equality holds in the Cauchy-Schwarz inequality if and only if x and y are linearly dependent.

Use the Cauchy-Schwarz inequality to show that

$$
\int_{0}^{1} f(t) t^{n} d t \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

for all $f \in C[0,1]$.
3. (a) What is the orthogonal complement, M^{\perp}, of a closed linear subspace M of a Hilbert space H ?

Prove that M^{\perp} is also a closed linear subspace of H, and that $M \cap M^{\perp}=\{0\}$.
Let $H=\ell_{2}$, and let $M=\left\{\left(x_{n}\right) \in \ell_{2}: x_{n}=0\right.$ for n odd $\}$. Calculate M^{\perp} and show directly that $H=M \oplus M^{\perp}$.
(b) Let X and Y be complex normed spaces. What is a linear operator from X to Y ? What does it mean to say that such an operator is bounded?

Let $B(X, Y)$ denote the space of bounded linear operators from X to Y. Show that $B(X, Y)$ is a normed space with respect to a suitable norm (which should be defined).

Show that the operator $T: \ell_{2} \rightarrow \ell_{2}$, defined by $T\left(x_{n}\right)=\left(y_{n}\right)$, where $y_{n}=3^{n} x_{n} / n$! for $n=1,2, \ldots$, is bounded, and calculate its norm.
(c) What is the adjoint, T^{*}, of a linear operator T on a Hilbert space H ?

Let $T: \ell_{2} \rightarrow \ell_{2}$ be the operator defined by

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(x_{1}, 0, x_{2}, 0, x_{3}, 0, \ldots\right)
$$

Give a formula for the operator T^{*}.
4. (a) Let T be a linear operator on a complex normed space X. What is the definition of the spectrum, $\sigma(T)$ of T ? What is the spectral radius, $r(T)$ of T ?

Show that $I-T / \lambda$ is invertible whenever $|\lambda|>\|T\|$, and deduce that $r(T) \leq\|T\|$.

Give, without proof, an exact expression for $r(T)$ in terms of the norms of the powers of T.
(b) Let T be a linear operator on a complex Hilbert space H. What is meant by the following?
(i) T is unitary;
(ii) T is Hermitian (self-adjoint);
(iii) T is normal.

Show that if T is unitary then T is an isometry on H. Give an example of an isometry which is not unitary.

Let $M: L_{2}(-1,1) \rightarrow L_{2}(-1,1)$ be defined by $(M f)(t)=t^{2} f(t)$, for $f \in L_{2}(-1,1)$. Show that M is Hermitian, and that $\sigma(M)=[0,1]$.
5. (a) Let T be a bounded linear operator on a Hilbert space H. What is meant by saying that T is a Hilbert-Schmidt operator?

Let $\left(e_{n}\right)$ and $\left(f_{m}\right)$ be orthonormal bases of H, and T a Hilbert-Schmidt operator defined on H. By expanding each vector $T e_{n}$ in terms of the basis $\left(f_{m}\right)$ show that

$$
\sum_{n=1}^{\infty}\left\|T e_{n}\right\|^{2}=\sum_{m=1}^{\infty}\left\|T^{*} f_{m}\right\|^{2}
$$

Define the Hilbert-Schmidt norm of T with respect to an orthonormal basis $\left(e_{n}\right)$, and show that its definition is independent of the choice of basis.

Show also that $\|T\|_{H S}=\left\|T^{*}\right\|_{H S}$.
Give an example of a Hilbert-Schmidt operator in l_{2}.
(b) What does it mean to say that an operator T is compact?

State (without proof) the spectral theorem for compact normal operators.
Use the Neumann series to solve the Volterra integral equation $\phi-\lambda T \phi=f$ in $L_{2}[0,1]$, where $\lambda \in \mathbb{C}, f(t)=t^{2}$ for all t, and

$$
(T \phi)(x)=2 \int_{0}^{x} t \phi(t) d t .
$$

END

