MATH-326301

This question paper consists of 3 printed pages, each of which is identified by the reference MATH-326301

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-3263

(May/June 2004)

HILBERT SPACES

Time allowed: 3 hours

Answer **four** questions. All questions carry equal marks.

1. (a) Write down the axioms for a *metric* (distance function) on a set.

Write down the axioms for a *norm* 0n a complex vector space.

Show that any norm produces a metric in a vector space.

Give examples of two different norms on the vector space \mathbb{R}^2 .

Give an example of a metric on the vector space \mathbb{R}^2 which is *not* generated by a norm.

(b) What is meant by saying that a sequence (e_n) in an inner-product space is orthonormal?

Let $\{e_1, \ldots, e_n\}$ be a finite orthonormal set in an inner-product space E and let M be the subspace $\text{Lin}\{e_1, \ldots, e_n\}$. Let $x \in E$, and let $y = \sum_{i=1}^n \langle x, e_i \rangle e_i$. Show that $x - y \in M^{\perp}$ and derive Bessel's inequality.

Show that the functions e_n for $n \in \mathbb{Z}$, defined by $e_n(t) = \frac{1}{\sqrt{2\pi}}e^{int}$, are orthonormal with respect to a certain inner product defined on $C[-\pi,\pi]$, which should be specified.

Show that

$$\int_{-\pi}^{\pi} f(t)e^{-int}dt \to 0 \qquad \text{as} \quad n \to \infty,$$

for all $f \in C[-\pi, \pi]$.

2. (a) Let Y be a linear subspace of a normed space X. Prove the following:

(i) If Y is complete, then Y is a closed subspace.

(ii) \overline{Y} , the closure of Y, is also a linear subspace of X.

Give an example of an *incomplete* inner-product space, and prove that it is incomplete.

(b) State and prove the Cauchy–Schwarz inequality for two vectors x, y in a complex innerproduct space. Prove that equality holds in the Cauchy–Schwarz inequality if and only if xand y are linearly dependent.

Use the Cauchy–Schwarz inequality to show that

$$\int_0^1 f(t) t^n dt \to 0 \qquad \text{as} \quad n \to \infty,$$

for all $f \in C[0, 1]$.

3. (a) What is the *orthogonal complement*, M^{\perp} , of a closed linear subspace M of a Hilbert space H?

Prove that M^{\perp} is also a closed linear subspace of H, and that $M \cap M^{\perp} = \{0\}$.

Let $H = \ell_2$, and let $M = \{(x_n) \in \ell_2 : x_n = 0 \text{ for } n \text{ odd}\}$. Calculate M^{\perp} and show directly that $H = M \oplus M^{\perp}$.

(b) Let X and Y be complex normed spaces. What is a *linear operator* from X to Y? What does it mean to say that such an operator is *bounded*?

Let B(X, Y) denote the space of bounded linear operators from X to Y. Show that B(X, Y) is a normed space with respect to a suitable norm (which should be defined).

Show that the operator $T : \ell_2 \to \ell_2$, defined by $T(x_n) = (y_n)$, where $y_n = 3^n x_n/n!$ for $n = 1, 2, \ldots$, is bounded, and calculate its norm.

(c) What is the *adjoint*, T^* , of a linear operator T on a Hilbert space H?

Let $T: \ell_2 \to \ell_2$ be the operator defined by

 $T(x_1, x_2, x_3, x_4, \ldots) = (x_1, 0, x_2, 0, x_3, 0, \ldots).$

Give a formula for the operator T^* .

4. (a) Let T be a linear operator on a complex normed space X. What is the definition of the spectrum, $\sigma(T)$ of T? What is the spectral radius, r(T) of T?

Show that $I - T/\lambda$ is invertible whenever $|\lambda| > ||T||$, and deduce that $r(T) \le ||T||$.

Give, without proof, an exact expression for r(T) in terms of the norms of the powers of T.

(b) Let T be a linear operator on a complex Hilbert space H. What is meant by the following?

(i) T is unitary; (ii) T is Hermitian (self-adjoint); (iii) T is normal.

Show that if T is unitary then T is an isometry on H. Give an example of an isometry which is not unitary.

Let $M : L_2(-1, 1) \to L_2(-1, 1)$ be defined by $(Mf)(t) = t^2 f(t)$, for $f \in L_2(-1, 1)$. Show that M is Hermitian, and that $\sigma(M) = [0, 1]$.

5. (a) Let T be a bounded linear operator on a Hilbert space H. What is meant by saying that T is a *Hilbert-Schmidt operator*?

Let (e_n) and (f_m) be orthonormal bases of H, and T a Hilbert–Schmidt operator defined on H. By expanding each vector Te_n in terms of the basis (f_m) show that

$$\sum_{n=1}^{\infty} \|Te_n\|^2 = \sum_{m=1}^{\infty} \|T^*f_m\|^2.$$

Define the *Hilbert–Schmidt norm* of T with respect to an orthonormal basis (e_n) , and show that its definition is independent of the choice of basis.

Show also that $||T||_{HS} = ||T^*||_{HS}$.

Give an example of a Hilbert–Schmidt operator in l_2 .

(b) What does it mean to say that an operator T is compact?

State (without proof) the spectral theorem for compact normal operators.

Use the Neumann series to solve the Volterra integral equation $\phi - \lambda T \phi = f$ in $L_2[0, 1]$, where $\lambda \in \mathbb{C}$, $f(t) = t^2$ for all t, and

$$(T\phi)(x) = 2\int_0^x t\phi(t) \, dt$$

END