© UNIVERSITY OF LEEDS

Examination for the Module MATH-3263
(May-June 2002)

HILBERT SPACES

Time allowed : 3 hours

Do not answer more than four questions. All questions carry equal marks.

1. (a) Write down the axioms for a complex inner-product space.

State and prove the Cauchy-Schwarz inequality for two vectors x, y in a complex innerproduct space. Prove that equality holds in the Cauchy-Schwarz inequality if and only if x and y are linearly dependent.

Show that the following inequality holds for any continuous function f defined on $[0, \pi]$:

$$
\left|\int_{0}^{\pi} f(t) \sqrt{\sin t} d t\right| \leq \sqrt{2}\left(\int_{0}^{\pi}|f(t)|^{2} d t\right)^{1 / 2}
$$

Give a formula for the norm of a vector in an inner-product space E, and, using this definition, prove that the triangle inequality $\|x+y\| \leq\|x\|+\|y\|$ is satisfied for all x, $y \in E$.
(b) Define the complex Hilbert space ℓ_{2}, giving an expression for the inner product between two vectors in the space.

Let c_{00} denote the subspace of ℓ_{2} consisting of all sequences $x=\left(x_{n}\right)_{n=1}^{\infty}$ such that $x_{n}=0$ except for finitely many n. Show that c_{00} is not a closed subspace.
2. (a) What is meant by saying that a sequence $\left(e_{n}\right)$ in an inner-product space is orthonormal?

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a finite orthonormal set in an inner-product space E and let M be the subspace $\operatorname{Lin}\left\{e_{1}, \ldots, e_{n}\right\}$. Let $x \in E$, and let $y=\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i}$. Show that $x-y \in M^{\perp}$. Deduce that $\|x\| \geq\|y\|$, and hence derive Bessel's inequality.

Show also that $\|x-y\| \leq\|x-z\|$ for all $z \in M$.

Show that $\left\{t, 1-3 t^{2}\right\}$ is an orthogonal basis for the subspace W of $L_{2}[-1,1]$ consisting of all polynomials $p(t)=a+b t+c t^{2}$ such that $\int_{-1}^{1} p(t) d t=0$. Hence determine the best $L_{2}[-1,1]$ approximation to the function t^{3} by an element of W.
(b) State without proof the Riesz-Fischer theorem, which, for an orthonormal sequence $\left(e_{n}\right)$ in a Hilbert space H, characterizes those sequences $\left(\lambda_{n}\right)$ of complex numbers for which the sum $\sum_{n=1}^{\infty} \lambda_{n} e_{n}$ converges in H.

Show that the sequence $\left(e_{n}\right)$, given by $e_{n}(t)=e^{i n t} / \sqrt{2 \pi}$, is orthonormal in $L_{2}(-\pi, \pi)$. For which positive values of r is the series $\sum_{n=1}^{\infty} e^{i n t} / n^{r}$ the Fourier series of a function in $L_{2}(-\pi, \pi)$?
3. (a) What is the orthogonal complement, M^{\perp}, of a closed linear subspace M of a Hilbert space H ?

Prove that M^{\perp} is a closed linear subspace of H, and that $M \cap M^{\perp}=\{0\}$.
Let $H=\ell_{2}$, and let $M=\left\{\left(x_{n}\right) \in \ell_{2}: x_{n}=0\right.$ whenever n is a multiple of 3$\}$. Determine M^{\perp}, and show directly that $H=M \oplus M^{\perp}$.
(b) Let X and Y be complex normed spaces. What is a linear operator from X to Y ? What does it mean to say that such an operator is bounded?

Let $B(X, Y)$ denote the space of bounded linear operators from X to Y. Show that $B(X, Y)$ is a normed space with respect to a suitable norm (which should be defined).

Show that the operator $T: \ell_{2} \rightarrow \ell_{2}$, defined by $T\left(x_{n}\right)=\left(y_{n}\right)$, where $y_{n}=n^{2} x_{n} / 2^{n}$ for $n=1,2, \ldots$, is bounded, and calculate its norm.
(c) What is the adjoint, T^{*}, of a linear operator T on a Hilbert space H ?

Let $T: \ell_{2} \rightarrow \ell_{2}$ be the operator defined by

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(0,0, x_{1}, x_{2}, x_{3}, \ldots\right)
$$

Give a formula for the operator T^{*}.
4. (a) Let T be a linear operator on a complex normed space X. What is the definition of the spectrum, $\sigma(T)$ of T ? What is the spectral radius, $r(T)$ of T ?

Show that $I-T / \lambda$ is invertible whenever $|\lambda|>\|T\|$, and deduce that $r(T) \leq\|T\|$.
Give, without proof, an exact expression for $r(T)$ in terms of the norms of the powers of T.
(b) Let T be a linear operator on a complex Hilbert space H. What is meant by the following?
(i) T is unitary;
(ii) T is Hermitian (self-adjoint);
(iii) T is normal.

Show that if T is unitary then T is an isometry on H. Give an example of an isometry which is not unitary.

Let $M: L_{2}(-1,1) \rightarrow L_{2}(-1,1)$ be defined by $(M f)(t)=\left(1-t^{2}\right) f(t)$, for $f \in L_{2}(-1,1)$. Show that M is Hermitian, and that $\sigma(M)=[0,1]$.
5. (a) Let T be a bounded linear operator on a Hilbert space H. What is meant by saying that T is a Hilbert-Schmidt operator? What is the Hilbert-Schmidt norm of T ?

What does it mean to say that an operator T is compact?
Let T be a Hilbert-Schmidt operator on H and let $\left(e_{n}\right)$ be an orthonormal basis of H. Show that

$$
\left\|T \sum_{n=1}^{\infty} a_{n} e_{n}\right\| \leq\left(\sum_{n=1}^{\infty}\left\|T e_{n}\right\|^{2}\right)^{1 / 2}\left\|\sum_{n=1}^{\infty} a_{n} e_{n}\right\|
$$

For $k \geq 1$ let T_{k} denote the operator defined by

$$
T_{k}\left(\sum_{n=1}^{\infty} a_{n} e_{n}\right)=\sum_{n=1}^{k} a_{n} T e_{n}
$$

Show that $\left\|T-T_{k}\right\| \rightarrow 0$, and hence deduce that T is compact.
(b) State (without proof) the spectral theorem for compact normal operators.

Suppose that K is a continuous function on the unit square $[0,1] \times[0,1]$, and let T : $L_{2}(0,1) \rightarrow L_{2}(0,1)$ be the operator defined by

$$
(T f)(x)=\int_{0}^{1} K(x, y) f(y) d y, \quad \text { for } f \in L_{2}(0,1)
$$

Show that T is a Hilbert-Schmidt operator.
Suppose now that $\left(u_{n}\right)$ is an orthonormal basis of $L_{2}(0,1)$ consisting of eigenvectors of T, with corresponding eigenvalues $\left(\lambda_{n}\right)$, and that $1 \notin \sigma(T)$. Show that the Fredholm equation

$$
T f=f+g
$$

has a unique solution $f \in L_{2}(0,1)$ for any $g=\sum_{n=1}^{\infty} \mu_{n} u_{n} \in L_{2}(0,1)$, and express the solution in terms of the eigenvalues and eigenvectors of T.

END

