This question paper consists of 4 printed pages, each of which is identiOnly approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-3224
(January 2007)

Topology

Time allowed: 3 hours

Attempt no more than four questions. All questions carry equal marks.

1. (a) Define the following mathematical terms:
(i). A topology τ on a set X.
(ii). A Hausdorff topological space.
(iii). A closed subset of a topological space.
(iv). The closure \bar{A} of a subset A of a topological space.
(v). The interior A° of a subset A of a topological space.
(vi). The boundary ∂A of a subset A of a topological space.
(vii). A continuous map $f: X \rightarrow Y$ between topological spaces X and Y.
(b) Let $\sigma=\{U \subset \mathbb{R}: U$ is finite $\} \cup\{\emptyset, \mathbb{R}\}$. Show that σ is not a topology on \mathbb{R}.
(c) Let $\tau=\{U \subset \mathbb{R}$: if $0 \in U$ then $U=\mathbb{R}\}$.
(i). Show that τ is a topology on \mathbb{R} and determine, clearly explaining your reasoning, whether (\mathbb{R}, τ) is Hausdorff.
(ii). Let $A=(-1,1)$ and $B=(0,1)$. Write down the closure, interior and boundary of each of these sets in (\mathbb{R}, τ).
(iii). Let $f:(\mathbb{R}, \tau) \rightarrow(\mathbb{R}, \tau)$ be continuous with $f(0) \neq 0$. Prove that f is constant.
(iv). Let $g:(\mathbb{R}, \tau) \rightarrow(\mathbb{R}, \tau)$ be any function with $g(0)=0$. Prove that g is continuous.
(v). Let τ_{*} be the usual topology on \mathbb{R} and $h:(\mathbb{R}, \tau) \rightarrow\left(\mathbb{R}, \tau_{*}\right)$ such that $h(x)=x^{3}$. Is h continuous? Carefully explain your answer.
2. (a) Let (X, τ) be a topological space and A be a subset of X.
(i). Define the subspace topology τ_{A} on A.
(ii). Show that the inclusion map $\iota:\left(A, \tau_{A}\right) \rightarrow(X, \tau), \iota(x)=x$, is continuous.
(iii). Let $X=\mathbb{R}, \tau$ be the usual topology on \mathbb{R} and $A=[0,1] \cup \mathbb{Z}$. Determine, clearly explaining your reasoning, whether the following sets are open in $\left(A, \tau_{A}\right)$:

$$
B=\{0,1\}, \quad C=\{2,3\}, \quad D=[0,1) .
$$

(b) (i). Define the terms connected topological space and connected subset of a topological space.
(ii). Let X be a connected topological space, Y be a topological space and $f: X \rightarrow Y$ be a continuous map. Prove that $f(X)$ is a connected subset of Y.
(iii). Let $\left\{A_{\lambda}: \lambda \in \Lambda\right\}$ be an indexed family of connected subsets of a topological space X with the property that $\bigcap_{\lambda \in \Lambda} A_{\lambda} \neq \emptyset$. Prove that $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is a connected subset of X.
(iv). Using the above results, prove that the unit 2 -sphere

$$
S^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

is a connected subset of \mathbb{R}^{3} (with the usual topology). You may assume the following facts without proof (where $\mathbb{R}, \mathbb{R}^{3}$ have the usual topology):

- Every interval is a connected subset of \mathbb{R}.
- A function $f: Z \rightarrow \mathbb{R}^{3}, f(z)=\left(f_{1}(z), f_{2}(z), f_{3}(z)\right)$, is continuous if each $f_{i}: Z \rightarrow \mathbb{R}, i=1,2,3$, is continuous

3. (a) Define the following mathematical terms:
(i). An open cover of a topological space.
(ii). A compact topological space.
(iii). A compact subset of a topological space.
(b) Let σ_{1}, σ_{2} be the following collections of subsets of \mathbb{R} :

$$
\begin{aligned}
& \sigma_{1}=\{(a, \infty): a \in \mathbb{R}\} \cup\{\emptyset, \mathbb{R}\}, \\
& \sigma_{2}=\{U \subset \mathbb{R}: \mathbb{R} \backslash U \text { is finite }\} \cup\{\emptyset\} .
\end{aligned}
$$

You are given that σ_{1}, σ_{2} are topologies on \mathbb{R}.
(i). Show that $\left(\mathbb{R}, \sigma_{1}\right)$ is noncompact.
(ii). Show that $\left(\mathbb{R}, \sigma_{2}\right)$ is compact.
(c) Let X be a compact topological space, Y be a topological space and $f: X \rightarrow Y$ be continuous. Prove that $f(X)$ is a compact subset of Y.
(d) Let X be a Hausdorff topological space and A be a compact subset of X. Prove that A is closed.
(e) Let τ_{*} be the usual topology on \mathbb{R} and τ be any compact topology on \mathbb{R}. Let

$$
f:(\mathbb{R}, \tau) \rightarrow\left(\mathbb{R}, \tau_{*}\right) \quad \text { such that } \quad f(x)=\frac{1}{1+x^{2}}
$$

Using the results of parts (c) and (d), or otherwise, show that f is not continuous.
4. (a) Define the following mathematical terms:
(i). A metric d on a set X.
(ii). A Cauchy sequence in (X, d).
(iii). A complete metric space.
(iv). A contraction mapping.
(v). A fixed point of a mapping.
(b) (i). Let $\varphi: X \rightarrow X$ be a contraction mapping. Prove that φ is sequentially continuous.
(ii). Let $\varphi: X \rightarrow X$ be a contraction mapping, $x_{1} \in X$ and the sequence $\left(x_{n}\right)$ be defined by $x_{n}=\varphi\left(x_{n-1}\right)$ for all $n \geq 2$. Prove that $\left(x_{n}\right)$ is Cauchy.
(iii). State and prove the Contraction Mapping Theorem.
(c) Use the Contraction Mapping Theorem to prove that the equation

$$
x^{4}-2 x^{2}+16 x+7=0
$$

has one and only one solution in $[-1,1]$.
5. Determine whether each of the following statements is true or false. If the statement is true, prove it. If the statement is false, give a counterexample, explaining why it is a counterexample.
(a) Let X be a Hausdorff space and $f: X \rightarrow Y$ be continuous and surjective. Then Y is Hausdorff.
(b) For all subsets A, B of a topological space $X, \bar{A} \cap \bar{B}=\overline{A \cap B}$.
(c) Let A be a compact subset of a topological space X. Then A is closed.
(d) Let $f: X \rightarrow Y$ be continuous. Then f is sequentially continuous.
(e) Let A be a closed and bounded subset of a metric space (X, d). Then A is compact.
(f) Let A be a compact subset of a metric space (X, d). Then $X \backslash A$ is noncompact.
(g) Let X be a topological space, Y be a Hausdorff space, $f: X \rightarrow Y$ and $g: X \rightarrow Y$ be continuous, and

$$
C=\{x \in X: f(x)=g(x)\} .
$$

Then C is closed.

