MATH-321401

This question paper consists of 2 printed
Only approved basic scientific pages, each of which is identified by the reference MATH-321401

© UNIVERSITY OF LEEDS

Examination for the Module MATH-3214
(January 2005)

Fourier analysis

Time allowed : 3 hours

Answer not more than four questions. All questions carry equal marks.
All functions in this paper are assumed to be Riemann integrable on any finite interval.

1. (a) What is meant by saying that a function $f: \mathbb{R} \rightarrow \mathbb{C}$ has period T ? Give an example of a (non-constant) function that has period 2 .
(b) Define the complex Fourier coefficients $\hat{f}(n), n \in \mathbb{Z}$, of a 2π-periodic function $f: \mathbb{R} \rightarrow \mathbb{C}$.

For $k \in \mathbb{Z}$, let $e_{k}(x)=e^{i k x}$. Show that $\widehat{e_{k}}(n)= \begin{cases}1 & \text { if } k=n, \\ 0 & \text { otherwise } .\end{cases}$
Let p be the trigonometric polynomial given by $p(x)=\sum_{k=-N}^{N} c_{k} e_{k}(x)$. Show that

$$
\hat{p}(n)= \begin{cases}c_{n} & \text { if }|n| \leqslant N, \\ 0 & \text { otherwise }\end{cases}
$$

The function g is defined by $g(x)=\sin ^{2} x$. Express g as a linear combination of the functions e_{k}, and hence find its Fourier coefficients $\hat{g}(n)$.
(c) Define the Fourier cosine and sine coefficients a_{n}, b_{n} of a 2π-periodic function f, and obtain formulas for a_{n}, b_{n} in terms of $\hat{f}(n)$ and $\hat{f}(-n)$.
2. (a) What does it mean to say that a 2π-periodic function f has an absolutely convergent Fourier series?

Let f be the 2π-periodic function defined on $(-\pi, \pi]$ by $f(x)=x^{2}$. Show that the Fourier coefficients of f are given by $\hat{f}(n)=2(-1)^{n} / n^{2}$ for $n \neq 0$, and find $\hat{f}(0)$.

Explain why the Fourier series of f converges to f. By making use of this convergence at the point $x=\pi$, prove that $\sum_{n=1}^{\infty} 1 / n^{2}=\pi^{2} / 6$.
(b) Define the convolution $f * g$ of two continuous 2π-periodic functions $f, g: \mathbb{R} \rightarrow \mathbb{C}$.

For a fixed integer p, let $g(x)=e^{i p x}$ and let $h=f * g$. Show that $h=\hat{f}(p) g$.
3. Define the inner-product norm $\|f\|$ of a continuous 2π-periodic function $f: \mathbb{R} \rightarrow \mathbb{C}$. Prove that $\left\|f-s_{k}(f)\right\|^{2}=\|f\|^{2}-\sum_{n=-k}^{k}|\hat{f}(n)|^{2}$, where $s_{k}(f)(x)=\sum_{n=-k}^{k} \hat{f}(n) e^{i n x}$ and k is a positive integer. Hence show that $\sum_{n=-\infty}^{\infty}|\hat{f}(n)|^{2} \leqslant \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x$.

By calculating the Fourier coefficients of the 2π-periodic function f defined on $(-\pi, \pi]$ by $f(x)=e^{\lambda x}$ (where $\lambda>0$), show that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{\lambda^{2}+n^{2}} \leqslant \frac{\pi \cosh \lambda \pi}{\lambda \sinh \lambda \pi} .
$$

4. (a) Define the Fourier transform \hat{f} of a function $f: \mathbb{R} \rightarrow \mathbb{C}$ satisfying $\int_{\mathbb{R}}|f(x)| d x<\infty$.

For $a \in \mathbb{R}$ and $b>0$, define functions $T_{a} f$ and $D_{b} f$ by

$$
\left(T_{a} f\right)(x)=f(x-a), \quad\left(D_{b} f\right)(x)=f(x / b) .
$$

Obtain formulas for the Fourier transforms $\widehat{T_{a} f}(w)$ and $\widehat{D_{b} f}(w)$.
(b) Let g denote the Gaussian function $g(x)=e^{-x^{2}}$, for $x \in \mathbb{R}$. Assuming without proof that it is legitimate to differentiate the integral defining \hat{g}, show that

$$
\hat{g}^{\prime}(w)=-\frac{1}{2} w \hat{g}(w), \quad \text { for } w \in \mathbb{R}
$$

Given that $\int_{\mathbb{R}} g(x) d x=\sqrt{\pi}$, calculate $\hat{g}(w)$ for $w \in \mathbb{R}$.
Using the first part of the question, find the Fourier transform of the function $f(x)=e^{-x^{2} / 2}$.
5. (a) Define the inverse Fourier transform \check{f} of a function $f: \mathbb{R} \rightarrow \mathbb{C}$ with $\int_{\mathbb{R}}|f(w)| d w<\infty$.

Find \check{f} when the function f is defined by

$$
f(w)= \begin{cases}1 & \text { when }|w| \leqslant 1 \\ 0 & \text { otherwise }\end{cases}
$$

(b) Let $K_{1}: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying
(i) $K_{1}(x) \geqslant 0$ for all $x \in \mathbb{R}$,
(ii) $\int_{\mathbb{R}} K_{1}(x) d x=1$
(iii) $K_{1}(x) \leqslant C /\left(1+x^{2}\right)$, for some constant $C>0$.

Also, let K_{m} be defined by $K_{m}(x)=m K_{1}(m x)$, for each $m \in \mathbb{N}$. Show that, for a continuous function $f: \mathbb{R} \rightarrow \mathbb{C}$ satisfying $\int_{\mathbb{R}}|f(x)| d x<\infty$,

$$
\left(K_{m} * f\right)(x) \rightarrow f(x) \quad \text { as } m \rightarrow \infty
$$

for each $x \in \mathbb{R}$.

