MATH-321401

This question paper consists of 2 printed pages, each of which is identified by the reference MATH-321401

© UNIVERSITY OF LEEDS Examination for the Module MATH-3214

(January 2005)

Fourier analysis

Time allowed : 3 hours

Answer not more than **four** questions. All questions carry equal marks. All functions in this paper are assumed to be Riemann integrable on any finite interval.

- 1. (a) What is meant by saying that a function $f : \mathbb{R} \to \mathbb{C}$ has *period* T? Give an example of a (non-constant) function that has period 2.
 - (b) Define the complex Fourier coefficients $\hat{f}(n), n \in \mathbb{Z}$, of a 2π -periodic function $f : \mathbb{R} \to \mathbb{C}$.

For $k \in \mathbb{Z}$, let $e_k(x) = e^{ikx}$. Show that $\widehat{e_k}(n) = \begin{cases} 1 & \text{if } k = n, \\ 0 & \text{otherwise.} \end{cases}$

Let p be the trigonometric polynomial given by $p(x) = \sum_{k=-N}^{N} c_k e_k(x)$. Show that

$$\hat{p}(n) = \begin{cases} c_n & \text{if } |n| \leq N, \\ 0 & \text{otherwise.} \end{cases}$$

The function g is defined by $g(x) = \sin^2 x$. Express g as a linear combination of the functions e_k , and hence find its Fourier coefficients $\hat{g}(n)$.

(c) Define the Fourier cosine and sine coefficients a_n , b_n of a 2π -periodic function f, and obtain formulas for a_n , b_n in terms of $\hat{f}(n)$ and $\hat{f}(-n)$.

2. (a) What does it mean to say that a 2π -periodic function f has an *absolutely convergent* Fourier series?

Let f be the 2π -periodic function defined on $(-\pi, \pi]$ by $f(x) = x^2$. Show that the Fourier coefficients of f are given by $\hat{f}(n) = 2(-1)^n/n^2$ for $n \neq 0$, and find $\hat{f}(0)$.

Explain why the Fourier series of f converges to f. By making use of this convergence at the point $x = \pi$, prove that $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$.

(b) Define the convolution f * g of two continuous 2π -periodic functions $f, g : \mathbb{R} \to \mathbb{C}$.

For a fixed integer p, let $g(x) = e^{ipx}$ and let h = f * g. Show that $h = \hat{f}(p)g$.

continued ...

Only approved basic scientific calculators may be used. **3.** Define the *inner-product norm* ||f|| of a continuous 2π -periodic function $f : \mathbb{R} \to \mathbb{C}$. Prove that $||f - s_k(f)||^2 = ||f||^2 - \sum_{n=-k}^k |\hat{f}(n)|^2$, where $s_k(f)(x) = \sum_{n=-k}^k \hat{f}(n)e^{inx}$ and k is a positive integer. Hence show that $\sum_{n=-\infty}^\infty |\hat{f}(n)|^2 \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$.

By calculating the Fourier coefficients of the 2π -periodic function f defined on $(-\pi, \pi]$ by $f(x) = e^{\lambda x}$ (where $\lambda > 0$), show that

$$\sum_{n=-\infty}^{\infty} \frac{1}{\lambda^2 + n^2} \leqslant \frac{\pi \cosh \lambda \pi}{\lambda \sinh \lambda \pi}$$

4. (a) Define the Fourier transform \hat{f} of a function $f : \mathbb{R} \to \mathbb{C}$ satisfying $\int_{\mathbb{R}} |f(x)| dx < \infty$.

For $a \in \mathbb{R}$ and b > 0, define functions $T_a f$ and $D_b f$ by

$$(T_a f)(x) = f(x - a),$$
 $(D_b f)(x) = f(x/b).$

Obtain formulas for the Fourier transforms $\widehat{T_af}(w)$ and $\widehat{D_bf}(w)$.

(b) Let g denote the Gaussian function $g(x) = e^{-x^2}$, for $x \in \mathbb{R}$. Assuming without proof that it is legitimate to differentiate the integral defining \hat{g} , show that

$$\hat{g}'(w) = -\frac{1}{2}w\hat{g}(w), \text{ for } w \in \mathbb{R}$$

 $g(x) dx = \sqrt{\pi}, \text{ calculate } \hat{g}(w) \text{ for } w \in \mathbb{R}.$

Using the first part of the question, find the Fourier transform of the function $f(x) = e^{-x^2/2}$.

5. (a) Define the inverse Fourier transform \check{f} of a function $f : \mathbb{R} \to \mathbb{C}$ with $\int_{\mathbb{R}} |f(w)| dw < \infty$.

Find \check{f} when the function f is defined by

$$f(w) = \begin{cases} 1 & \text{when } |w| \leq 1, \\ 0 & \text{otherwise.} \end{cases}$$

(b) Let $K_1 : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying

- (i) $K_1(x) \ge 0$ for all $x \in \mathbb{R}$,
- (*ii*) $\int_{\mathbb{R}} K_1(x) dx = 1$
- (*iii*) $K_1(x) \leq C/(1+x^2)$, for some constant C > 0.

Also, let K_m be defined by $K_m(x) = mK_1(mx)$, for each $m \in \mathbb{N}$. Show that, for a continuous function $f : \mathbb{R} \to \mathbb{C}$ satisfying $\int_{\mathbb{D}} |f(x)| dx < \infty$,

$$(K_m * f)(x) \to f(x) \quad \text{as } m \to \infty,$$

for each $x \in \mathbb{R}$.

Given that $\int_{\mathbb{D}}$

END