© UNIVERSITY OF LEEDS

Examination for the Module MATH-3214
(January 2003)

FOURIER ANALYSIS

Time allowed: 3 hours

Do not answer more than four questions. All questions carry equal marks.

All functions in this paper are assumed to be Riemann integrable on any finite interval.

1. (a) Define the complex Fourier coefficients $\hat{f}(n), n \in \mathbb{Z}$, of a 2π-periodic function $f: \mathbb{R} \rightarrow \mathbb{C}$.

Let $e_{k}(x)=e^{i k x}$, for $k \in \mathbb{Z}$. Show that

$$
\hat{e}_{k}(n)= \begin{cases}1 & \text { if } n=k \\ 0 & \text { otherwise }\end{cases}
$$

Calculate the Fourier coefficients of the functions $\cos k x$ and $\sin k x$ for $k=1,2, \ldots$
Let the function $p: \mathbb{R} \rightarrow \mathbb{C}$ have the form $p(x)=\sum_{k=1}^{m} a_{k} \cos k x+b_{k} \sin k x$ for some $m \in \mathbb{N}$ and real numbers a_{k} and b_{k}. Calculate $\hat{p}(n)$ for $n \in \mathbb{Z}$.
(b) You are given that $\sqrt{2}$ is an irrational number. By considering real solutions to the equation $f(x)=2$, or otherwise, show that the function f defined by $f(x)=\cos x+\cos (x \sqrt{2})$ is not periodic.
(c) The 2π-periodic function f is defined on $(-\pi, \pi]$ by $f(x)=|x|$.

Show that

$$
\int_{-\pi}^{\pi}|x| \cos n x d x=\frac{2\left((-1)^{n}-1\right)}{n^{2}}
$$

for $n \in \mathbb{Z} \backslash\{0\}$, and hence calculate the Fourier coefficients of f.
Assuming without proof that the Fourier series for f converges to $f(0)$ at the point $x=0$, deduce that

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=\frac{\pi^{2}}{8} .
$$

2. (a) What does it mean to say that a 2π-periodic function f has an absolutely convergent Fourier series?

State without proof a sufficient condition (in terms of the smoothness of f) for f to have an absolutely convergent Fourier series.

Determine, giving brief reasons, which of the following 2π-periodic functions defined by their values on $(-\pi, \pi]$ have absolutely convergent Fourier series. (There is no need to calculate any Fourier coefficients explicitly.)
(i) $f(x)=\cos ^{4} 3 x$;
(ii) $f(x)=e^{3 x}$;
(iii) $f(x)=1 /(2-\cos x)$.
(b) The Rudin-Shapiro trigonometric polynomials P_{n} and Q_{n} for $n=0,1,2, \ldots$ are defined inductively by the formulae $P_{0} \equiv 1, Q_{0} \equiv 1$, and

$$
\begin{aligned}
& P_{n+1}(x)=P_{n}(x)+e^{i 2^{n} x} Q_{n}(x), \\
& Q_{n+1}(x)=P_{n}(x)-e^{i 2^{n} x} Q_{n}(x),
\end{aligned}
$$

for $n \geq 0$ and $x \in \mathbb{R}$.
Prove that $\left|P_{n}(x)\right|^{2}+\left|Q_{n}(x)\right|^{2}=2^{n+1}$, and deduce that $\left|P_{n}(x)\right| \leq 2^{(n+1) / 2}$ for all $n \geq 0$ and $x \in \mathbb{R}$.

Explain briefly why the function f, defined by

$$
f(x)=\sum_{n=0}^{\infty} \frac{1}{2^{n}} e^{i 2^{n} x} P_{n}(x) \quad \text { for } \quad x \in \mathbb{R}
$$

is continuous and 2π-periodic on \mathbb{R}, and show that it does not have an absolutely convergent Fourier series.
3. (a) Define the convolution $f * g$ of two continuous 2π-periodic functions $f, g: \mathbb{R} \rightarrow \mathbb{C}$.

Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a continuous 2π-periodic function and let $p(x)=\sum_{k=-m}^{m} c_{k} e^{i k x}$ be a trigonometric polynomial.

Derive a formula for $f * p(x)$ in terms of the constants c_{k} and the Fourier coefficients $\hat{f}(k)$.
(b) Define the Dirichlet kernel functions $\left(D_{m}\right)_{m=0}^{\infty}$, and give the Fourier coefficients $\hat{D}_{m}(k)$ for $k \in \mathbb{Z}$.

Show that, if f is a 2π-periodic function, then $\left(f * D_{m}\right)(x)=\sum_{k=-m}^{m} \hat{f}(k) e^{i k x}$.
Deduce that for $m, n \in \mathbb{N}$, we have $D_{m} * D_{n}^{\prime}=D_{p}^{\prime}$, where $p=\min (m, n)$ and the notation D_{n}^{\prime} denotes the derivative of D_{n}.
(c) State Fejér's theorem on the summability of the Fourier series of continuous 2π-periodic functions.
4. (a) For $f, g: \mathbb{R} \rightarrow \mathbb{C}$ continuous and 2π-periodic we write

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

and, for $k \in \mathbb{Z}$, e_{k} denotes the function defined on \mathbb{R} by $e_{k}(x)=e^{i k x}$.
Prove that, for any positive integer k,

$$
\left\langle f-\sum_{n=-k}^{k}\left\langle f, e_{n}\right\rangle e_{n}, f-\sum_{n=-k}^{k}\left\langle f, e_{n}\right\rangle e_{n}\right\rangle=\langle f, f\rangle-\sum_{n=-k}^{k}\left|\left\langle f, e_{n}\right\rangle\right|^{2} .
$$

Deduce Bessel's inequality (which should be stated precisely).
(b) Let f be continuous and 2π-periodic, and suppose that its derivative f^{\prime} is also continuous. Prove that $\left(f^{\prime}\right)^{\wedge}(n)=\operatorname{in} \hat{f}(n)$ for $n \in \mathbb{Z}$.

State Parseval's identity and use it to prove that if f is 2π-periodic with a continuous derivative, and $\hat{f}(0)=0$, then

$$
\int_{-\pi}^{\pi}\left|f^{\prime}(x)\right|^{2} d x \geq \int_{-\pi}^{\pi}|f(x)|^{2} d x
$$

Give an example to show that the inequality can fail to hold if $\hat{f}(0) \neq 0$.
5. (a) Define the Fourier transform \hat{f} of a function $f: \mathbb{R} \rightarrow \mathbb{C}$ satisfying

$$
\begin{equation*}
\int_{-\infty}^{\infty}|f(x)| d x<\infty \tag{*}
\end{equation*}
$$

Let g denote the function defined by $\quad g(x)= \begin{cases}1-x^{2} & \text { if }|x| \leq 1, \\ 0 & \text { otherwise. }\end{cases}$
Show that

$$
\hat{g}(w)=\int_{-1}^{1}\left(1-x^{2}\right) \cos w x d x
$$

and hence derive the expression $\quad \hat{g}(w)=\frac{4(\sin w-w \cos w)}{w^{3}} \quad$ for $\quad w \neq 0$.
Define the inverse Fourier transform \check{f} of a function $f: \mathbb{R} \rightarrow \mathbb{C}$ satisfying (*).
Give a precise statement of Fourier's Inversion Theorem. Assuming without proof that the conditions of the theorem apply to the function g defined above, calculate

$$
\int_{-\infty}^{\infty} \hat{g}(w) \cos w x d w \quad \text { for } \quad x \in \mathbb{R}
$$

(b) Give a precise definition of the S chwartz class \mathcal{S} of smooth, rapidly-decreasing functions, and state without proof a theorem describing the Fourier transforms of functions in \mathcal{S}.

END

