© UNIVERSITY OF LEEDS

Examination for the Module MATH-3214
(January 2002)

FOURIER ANALYSIS

Time allowed: 3 hours

Do not answer more than four questions. All questions carry equal marks.

All functions in this paper are assumed to be Riemann integrable on any finite interval.

1. (a) Define the complex Fourier coefficients $\hat{f}(n), n \in \mathbb{Z}$, of a 2π-periodic function $f: \mathbb{R} \rightarrow \mathbb{C}$.

Let $e_{k}(x)=e^{i k x}$, for $k \in \mathbb{Z}$. Show that

$$
\hat{e}_{k}(n)= \begin{cases}1 & \text { if } k=n, \\ 0 & \text { otherwise }\end{cases}
$$

Let the function $p: \mathbb{R} \rightarrow \mathbb{C}$ have the form $p=\sum_{k=-m}^{m} c_{k} e_{k}$ for some $m \in \mathbb{N}$ and complex numbers c_{k}. Show that

$$
\hat{p}(n)= \begin{cases}c_{n} & \text { if }|n| \leq m, \\ 0 & \text { otherwise }\end{cases}
$$

The function h is defined by $h(x)=\cos ^{2} x$. Express h in terms of the functions e_{k}, and hence calculate its Fourier coefficients $\hat{h}(n)$.
(b) The 2π-periodic function f is defined on $(-\pi, \pi]$ by $f(x)=e^{x}$. What is $f(20 \pi)$?

Show that

$$
\hat{f}(n)=\frac{(-1)^{n} \sinh \pi}{\pi(1-i n)}, \quad \text { for } n \in \mathbb{Z}
$$

Assuming without proof that the Fourier series for f converges to $f(0)$ at the point $x=0$, deduce that

$$
\sum_{n \in \mathbb{Z}} \frac{(-1)^{n}}{1+n^{2}}=\frac{\pi}{\sinh \pi}
$$

2. (a) What does it mean to say that a 2π-periodic function f has an absolutely convergent Fourier series?

Show that if f has an absolutely convergent Fourier series, then its Fourier series converges uniformly to a continuous function g such that $\hat{g}(n)=\hat{f}(n)$ for all $n \in \mathbb{Z}$.

State without proof a sufficient condition (in terms of the smoothness of f) for f to have an absolutely convergent Fourier series.
(b) Let f be continuous and 2π-periodic, and suppose that its derivative f^{\prime} is also continuous. Prove that $\left(f^{\prime}\right)^{\wedge}(n)=\operatorname{in} \hat{f}(n)$ for $n \in \mathbb{Z}$.

For a fixed r with $0<r<1$ the Poisson kernel function $P_{r}: \mathbb{R} \rightarrow \mathbb{R}$ is 2π-periodic and infinitely differentiable, and its Fourier coefficients satisfy $\hat{P}_{r}(n)=r^{|n|}$ for $n \in \mathbb{Z}$.

Calculate the Fourier coefficients of its k th derivative $P_{r}^{(k)}$ for $k \in \mathbb{N}$, and deduce that each $P_{r}^{(k)}$ has an absolutely convergent Fourier series.
(c) Give (without proof) an example of a continuous 2π-periodic nowhere-differentiable function, expressible as the sum of a Fourier series.

Explain briefly why the formula you have given defines a continuous function.
3. (a) Define the convolution $f * g$ of two continuous 2π-periodic functions $f, g: \mathbb{R} \rightarrow \mathbb{C}$.

Show that $f * e_{k}=\hat{f}(k) e_{k}$, where e_{k} denotes the function $e_{k}(x)=e^{i k x}$ for $k \in \mathbb{Z}$.
Give without proof a formula for $(f * g)^{\wedge}(n)$ in terms of $\hat{f}(n)$ and $\hat{g}(n)$, for $n \in \mathbb{Z}$.
Define the Dirichlet kernel functions $\left(D_{k}\right)_{k=0}^{\infty}$ in terms of the functions e_{k}, and hence give an expression for $f * D_{k}$ in terms of the Fourier coefficients of f. Show also that

$$
D_{k}(x)=\frac{\sin \left(k+\frac{1}{2}\right) x}{\sin \frac{x}{2}},
$$

whenever x is not a multiple of 2π. What value does D_{k} take at multiples of 2π ?
(b) Let $\left(K_{m}\right)_{m=0}^{\infty}$ denote the Fejér kernel functions given by

$$
K_{m}=\frac{1}{m+1} \sum_{k=0}^{m} D_{k} .
$$

Calculate the Fourier coefficients $\hat{K}_{m}(n)$ for $n \in \mathbb{Z}$.
State Fejér's theorem on the summability of Fourier series, and use it to deduce a corollary about the approximation of continuous functions by trigonometric polynomials.
4. For $f, g: \mathbb{R} \rightarrow \mathbb{C}$ continuous and 2π-periodic we write

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

and, for $k \in \mathbb{Z}$, e_{k} denotes the function defined on \mathbb{R} by $e_{k}(x)=e^{i k x}$.
Prove that, for any positive integer k,

$$
\begin{equation*}
\left\langle f-\sum_{n=-k}^{k}\left\langle f, e_{n}\right\rangle e_{n}, f-\sum_{n=-k}^{k}\left\langle f, e_{n}\right\rangle e_{n}\right\rangle=\langle f, f\rangle-\sum_{n=-k}^{k}\left|\left\langle f, e_{n}\right\rangle\right|^{2} . \tag{*}
\end{equation*}
$$

State without proof a theorem concerning the mean-square convergence of Fourier series of continuous 2π-periodic functions, and use it, together with $\left({ }^{*}\right)$ above, to deduce Parseval's identity.

Show that

$$
\int_{-\pi}^{\pi}|x| \cos n x d x=\frac{2\left((-1)^{n}-1\right)}{n^{2}}
$$

for $n \in \mathbb{Z} \backslash\{0\}$, and hence calculate the Fourier coefficients of the function f defined on $[-\pi, \pi]$ by $f(x)=|x|$.

Use Parseval's identity to deduce that $\quad \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}}=\frac{\pi^{4}}{96}$.
5. (a) Define the Fourier transform \hat{f} of a function $f: \mathbb{R} \rightarrow \mathbb{C}$ satisfying

$$
\int_{-\infty}^{\infty}|f(x)| d x<\infty . \quad(* *)
$$

Let g denote the Gaussian function $g(x)=e^{-x^{2}}$, for $x \in \mathbb{R}$. Assuming without proof that it is legitimate to differentiate the integral defining \hat{g}, show that

$$
\hat{g}^{\prime}(w)=-\frac{w}{2} \hat{g}(w), \quad \text { for } w \in \mathbb{R}
$$

Given that $\int_{-\infty}^{\infty} g(x) d x=\sqrt{\pi}$, calculate $\hat{g}(w)$ for $w \in \mathbb{R}$.
State the Riemann-Lebesgue Lemma for Fourier transforms and use it to deduce that the function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(w)=\frac{w^{2} \sin w}{w^{2}+1}$ is not the Fourier transform of any function f satisfying $\left({ }^{* *}\right)$.
(b) Define the inverse Fourier transform \check{f} of a function $f: \mathbb{R} \rightarrow \mathbb{C}$ satisfying (**).

For $n \in \mathbb{Z}$ find \check{f}_{n}, where f_{n} is the function defined by

$$
f_{n}(w)= \begin{cases}e^{i n w} & \text { if }|w| \leq \pi \\ 0 & \text { otherwise }\end{cases}
$$

Give a precise statement of Fourier's Inversion Theorem.

END

