© UNIVERSITY OF LEEDS

Inner-product and Metric Spaces

Time allowed : 2 hours

Do not attempt more than four questions
All questions carry equal marks

1. (a) Let V be a vector space over the real numbers. State what is meant by saying that \langle,$\rangle defines an inner product on V$.

Which of the following defines an inner product on \mathbb{R}^{2} ? Give proofs or counterexamples as appropriate. (We write $\mathbf{v}=\left(v_{1}, v_{2}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}\right)$.)
(i) $\langle\mathbf{v}, \mathbf{w}\rangle=2 v_{1} w_{1}+v_{1} w_{2}+v_{2} w_{1}+2 v_{2} w_{2}$;
(ii) $\langle\mathbf{v}, \mathbf{w}\rangle=v_{1} w_{2}$;
(iii) $\langle\mathbf{v}, \mathbf{w}\rangle=v_{1}^{2} w_{1}^{2}+v_{2} w_{2}$.
(b) Let V be an inner-product space with inner product \langle, \rangle. Define the norm, $\|\mathbf{v}\|$, of an element $\mathbf{v} \in V$, and show that we have $|\langle\mathbf{v}, \mathbf{w}\rangle| \leq\|\mathbf{v}\|\|\mathbf{w}\|$ for all $\mathbf{v}, \mathbf{w} \in V$.

What is meant by the angle, θ, between two nonzero vectors \mathbf{v} and \mathbf{w} ?
Suppose that $\|\mathbf{v}\|=1$ and $\|\mathbf{w}\|=2$; find a formula for $\|\mathbf{v}+\mathbf{w}\|$ in terms of θ. Calculate θ given that $\|\mathbf{v}+\mathbf{w}\|=\sqrt{3}$.
2. (a) Define the sequence space ℓ^{2}, and give a formula for the inner-product between two sequences $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$.
Which of the following sequences lies in ℓ^{2} ?
(i) $\left(\frac{1}{n}\right)_{n=1}^{\infty}$;
(ii) $\left(\frac{1}{\sqrt{n}}\right)_{n=1}^{\infty}$.

Calculate the ℓ^{2} norm of the sequence $\left(r^{n}\right)_{n=1}^{\infty}$, where r is a real number with $|r|<1$.
(b) What is meant by saying that a set $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ in an inner-product space V is orthonormal?

Prove that every orthonormal set $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is linearly independent.
(c) Apply the Gram-Schmidt procedure to find an orthonormal basis for the subspace of \mathbb{R}^{4} (with the standard inner product) spanned by the vectors $(0,0,1,1),(1,2,3,1)$ and (3, 1, 2, 0).
3. (a) Let V be an inner-product space and let W be a subspace of V. Suppose that for $\mathbf{v} \in V$ and $\mathbf{w} \in W$ the condition $\langle\mathbf{v}-\mathbf{w}, \mathbf{x}\rangle=0$ holds for all $\mathbf{x} \in W$. Show that $\|\mathbf{v}-\mathbf{w}\| \leq\|\mathbf{v}-\mathbf{y}\|$ for all $\mathbf{y} \in W$.

Suppose further that W has basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ (not necessarily orthonormal), and that $\mathbf{w}=a_{1} \mathbf{w}_{1}+\ldots+a_{n} \mathbf{w}_{n}$. Derive the normal equations satisfied by a_{1}, \ldots, a_{n}.
(b) A quantity z should theoretically depend on the variables x and y by means of the formula $z=a+b x y+c y^{2}$. Find the values of the constants a, b and c so that the formula best fits the following experimental data, in the sense of least squares approximation:

	x	y	z
First measurement	0	1	4
Second measurement	0	2	9
Third measurement	1	-1	5
Fourth measurement	1	1	9

4. (a) State the axioms for a metric space.

Define the space $C[0,1]$ and give the formulae for the three standard metrics d_{1}, d_{2} and d_{∞} defined on it (there is no need to prove that these satisfy the axioms for a metric).

Calculate the distance, in each of the metrics d_{1} and d_{∞}, between the functions $f(x)=2 x$ and $g(x)=1-x$.
(b) What is meant by saying that a sequence $\left(x_{n}\right)$ in a metric space (X, d) is (i) convergent, and (ii) Cauchy?

Give the definition of a complete metric space. Which of the following subsets of \mathbb{R} is complete in the usual metric $d(x, y)=|x-y|$? Give brief explanations.
(i) $(0,1)$;
(ii) $[0,1]$;
(iii) \mathbb{Q};
(iv) $\{0\}$.
5. (a) Let $\phi: X \rightarrow X$ be a mapping on a metric space (X, d). Define what is meant by saying that ϕ is a contraction mapping and state the Contraction Mapping Theorem.
(b) Show that the mapping ϕ defined by

$$
\phi(f)(x)=3+\int_{0}^{x}\left(2 \cos t+t^{2} f(t)\right) d t
$$

is a contraction mapping on $C[0,1]$, when the space is given an appropriate metric, which you should specify.

Using the contraction mapping theorem, deduce that the differential equation

$$
\frac{d y}{d x}=2 \cos x+x^{2} y
$$

has a unique solution in $C[0,1]$ such that $y=3$ when $x=0$.
Starting with the initial approximate solution $y=f_{0}(x) \equiv 3$, find a closer approximation to the actual solution.

END

