MATH-318101

This question paper consists of 2 printed pages, each of which is identified by the reference MATH-318101.

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-3181 (January 2006)

Inner-product and Metric Spaces

Time allowed : 2 hours

Do not attempt more than **four** questions All questions carry equal marks

1. (a) Let V be a vector space over the real numbers. State what is meant by saying that \langle , \rangle defines an *inner product* on V.

Let C[0, 1] denote the space of continuous real-valued functions on the closed interval [0, 1] of the real line. Which of the following defines an inner product on C[0, 1]? Give proofs or counterexamples as appropriate.

(i)
$$\langle f, g \rangle = \int_0^1 (1 - 2t) f(t) g(t) dt;$$
 (ii) $\langle f, g \rangle = \int_0^1 (f(t) + g(t)) dt;$
(iii) $\langle f, g \rangle = \int_0^1 t^2 f(t) g(t) dt.$

(b) Let V be an inner-product space with inner product \langle , \rangle . Define the *norm*, $\|\mathbf{v}\|$, of an element $\mathbf{v} \in V$, and show that we have $|\langle \mathbf{v}, \mathbf{w} \rangle| \leq \|\mathbf{v}\| \|\mathbf{w}\|$ for all $\mathbf{v}, \mathbf{w} \in V$.

Deduce that $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.

Given two vectors \mathbf{v} and \mathbf{w} with $\|\mathbf{v} + \mathbf{w}\| = 2$ and $\|\mathbf{v} - \mathbf{w}\| = 1$, find $\langle \mathbf{v}, \mathbf{w} \rangle$.

2. (a) Let V be an inner-product space with inner product \langle , \rangle . What is meant by saying that a set $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ of vectors in V is *orthogonal*?

Let C[-1,1] denote the space of continuous functions on the interval [-1,1] with inner product given by $\langle f,g \rangle = \int_{-1}^{1} f(t)g(t) dt$. Find real constants a, b and c such that the functions 1, t + a and $t^2 + bt + c$ form an orthogonal set in C[-1,1].

(b) What is meant by saying that a set $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ in an inner-product space V is *or*thonormal? Let \mathbf{v} be an element of V and $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ an orthonormal basis of V. Write down an expression for the coefficients c_k such that $\mathbf{v} = \sum_{k=1}^n c_k \mathbf{e}_k$.

(c) Apply the Gram–Schmidt procedure to find an orthonormal basis for the subspace of \mathbb{R}^4 (with the standard inner product) spanned by the vectors (1, 0, 0, 1), (4, 0, 1, 2) and (3, 3, 3, -3).

Find the orthogonal projection of the vector (0, 0, 1, 1) on W.

3. (a) Let V be an inner-product space and let W be a subspace of V. Suppose that for $\mathbf{v} \in V$ and $\mathbf{w} \in W$ the condition $\langle \mathbf{v} - \mathbf{w}, \mathbf{x} \rangle = 0$ holds for all $\mathbf{x} \in W$. Show that $\|\mathbf{v} - \mathbf{w}\| \leq \|\mathbf{v} - \mathbf{y}\|$ for all $\mathbf{y} \in W$.

Suppose further that W has basis $\{\mathbf{w}_1, \ldots, \mathbf{w}_n\}$ (not necessarily orthonormal), and that $\mathbf{w} = c_1 \mathbf{w}_1 + \ldots + c_n \mathbf{w}_n$. Derive the normal equations satisfied by c_1, \ldots, c_n .

(b) A quantity z should theoretically depend on the variables x and y by means of the formula $z = ax^2 + bxy + cy^2$. Find the values of the constants a, b and c so that the formula best fits the following experimental data, in the sense of least squares approximation:

	x	y	z
First measurement	1	0	-2
Second measurement	2	0	9
Third measurement	1	1	6
Fourth measurement	0	1	1

4. (a) State the axioms for a metric space.

Show that $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$ for every $a, b \geq 0$, and hence prove that (\mathbb{R}, d) is a metric space, where d is defined by $d(x, y) = |x - y|^{1/2}$.

(b) What is meant by saying that a sequence (x_n) in a metric space (X, d) is (i) convergent, and (ii) Cauchy?

Give the definition of a *complete* metric space, and show that the open interval (0, 1) is not complete under the usual metric d(x, y) = |x - y|.

(c) Give the definition of the *discrete metric* d_0 on an arbitrary nonempty set X.

Show that a sequence (x_n) is a Cauchy sequence in (X, d_0) if and only if for some N (depending on the sequence) $x_N = x_{N+1} = x_{N+2} = \cdots$. Deduce that X is complete under the discrete metric.

- 5. (a) Let $\phi : X \to X$ be a mapping on a metric space (X, d). Define what is meant by saying that ϕ is a *contraction mapping*.
 - (b) State and prove the Contraction Mapping Theorem for a complete metric space (X, d).
 - (c) Show that $\phi(x) = (x^4 + x^3 + 5)/8$ is a contraction mapping on [-1, 1].

Let $x_0 = 0$, and define $x_{n+1} = \phi(x_n)$ for each $n \ge 0$. Explain why the sequence (x_n) necessarily converges, and write down a polynomial equation satisfied by its limit L.

END