MATH-318101

© UNIVERSITY OF LEEDS

Inner-product and Metric Spaces

Time allowed : 2 hours

Do not attempt more than four questions
All questions carry equal marks

1. (a) Let V be a vector space over the real numbers. State what is meant by saying that \langle,$\rangle defines an inner product on V$.

Let $C[0,1]$ denote the space of continuous real-valued functions on the closed interval $[0,1]$ of the real line. Which of the following defines an inner product on $C[0,1]$? Give proofs or counterexamples as appropriate.
(i) $\langle f, g\rangle=\int_{0}^{1}(1-2 t) f(t) g(t) d t$;
(ii) $\langle f, g\rangle=\int_{0}^{1}(f(t)+g(t)) d t$;
(iii) $\langle f, g\rangle=\int_{0}^{1} t^{2} f(t) g(t) d t$.
(b) Let V be an inner-product space with inner product \langle,$\rangle . Define the norm, \|\mathbf{v}\|$, of an element $\mathbf{v} \in V$, and show that we have $|\langle\mathbf{v}, \mathbf{w}\rangle| \leq\|\mathbf{v}\|\|\mathbf{w}\|$ for all $\mathbf{v}, \mathbf{w} \in V$.

Deduce that $\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|$.
Given two vectors \mathbf{v} and \mathbf{w} with $\|\mathbf{v}+\mathbf{w}\|=2$ and $\|\mathbf{v}-\mathbf{w}\|=1$, find $\langle\mathbf{v}, \mathbf{w}\rangle$.
2. (a) Let V be an inner-product space with inner product \langle,$\rangle . What is meant by saying$ that a set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of vectors in V is orthogonal?

Let $C[-1,1]$ denote the space of continuous functions on the interval $[-1,1]$ with inner product given by $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$. Find real constants a, b and c such that the functions $1, t+a$ and $t^{2}+b t+c$ form an orthogonal set in $C[-1,1]$.
(b) What is meant by saying that a set $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ in an inner-product space V is orthonormal? Let \mathbf{v} be an element of V and $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ an orthonormal basis of V. Write down an expression for the coefficients c_{k} such that $\mathbf{v}=\sum_{k=1}^{n} c_{k} \mathbf{e}_{k}$.
(c) Apply the Gram-Schmidt procedure to find an orthonormal basis for the subspace of \mathbb{R}^{4} (with the standard inner product) spanned by the vectors $(1,0,0,1),(4,0,1,2)$ and $(3,3,3,-3)$.

Find the orthogonal projection of the vector $(0,0,1,1)$ on W.
3. (a) Let V be an inner-product space and let W be a subspace of V. Suppose that for $\mathbf{v} \in V$ and $\mathbf{w} \in W$ the condition $\langle\mathbf{v}-\mathbf{w}, \mathbf{x}\rangle=0$ holds for all $\mathbf{x} \in W$. Show that $\|\mathbf{v}-\mathbf{w}\| \leq\|\mathbf{v}-\mathbf{y}\|$ for all $\mathbf{y} \in W$.

Suppose further that W has basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ (not necessarily orthonormal), and that $\mathbf{w}=c_{1} \mathbf{w}_{1}+\ldots+c_{n} \mathbf{w}_{n}$. Derive the normal equations satisfied by c_{1}, \ldots, c_{n}.
(b) A quantity z should theoretically depend on the variables x and y by means of the formula $z=a x^{2}+b x y+c y^{2}$. Find the values of the constants a, b and c so that the formula best fits the following experimental data, in the sense of least squares approximation:

	x	y	z
First measurement	1	0	-2
Second measurement	2	0	9
Third measurement	1	1	6
Fourth measurement	0	1	1

4. (a) State the axioms for a metric space.

Show that $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$ for every $a, b \geq 0$, and hence prove that (\mathbb{R}, d) is a metric space, where d is defined by $d(x, y)=|x-y|^{1 / 2}$.
(b) What is meant by saying that a sequence $\left(x_{n}\right)$ in a metric space (X, d) is (i) convergent, and (ii) Cauchy?

Give the definition of a complete metric space, and show that the open interval $(0,1)$ is not complete under the usual metric $d(x, y)=|x-y|$.
(c) Give the definition of the discrete metric d_{0} on an arbitrary nonempty set X.

Show that a sequence $\left(x_{n}\right)$ is a Cauchy sequence in $\left(X, d_{0}\right)$ if and only if for some N (depending on the sequence) $x_{N}=x_{N+1}=x_{N+2}=\cdots$. Deduce that X is complete under the discrete metric.
5. (a) Let $\phi: X \rightarrow X$ be a mapping on a metric space (X, d). Define what is meant by saying that ϕ is a contraction mapping.
(b) State and prove the Contraction Mapping Theorem for a complete metric space (X, d).
(c) Show that $\phi(x)=\left(x^{4}+x^{3}+5\right) / 8$ is a contraction mapping on $[-1,1]$.

Let $x_{0}=0$, and define $x_{n+1}=\phi\left(x_{n}\right)$ for each $n \geq 0$. Explain why the sequence $\left(x_{n}\right)$ necessarily converges, and write down a polynomial equation satisfied by its limit L.

END

