© UNIVERSITY OF LEEDS
Examination for the Module MATH-3181
(January 2005)

Inner-product and Metric Spaces

Time allowed : 2 hours

Do not attempt more than four questions
All questions carry equal marks

1. (a) Let V be a vector space over the real numbers. State what is meant by saying that \langle,$\rangle defines an inner product on V$.

Which of the following defines an inner product on \mathbb{R}^{2} ? Give proofs or counter-examples, as appropriate. (We write $\mathbf{x}=\left(x_{1}, x_{2}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}\right)$.)
(i) $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}-x_{2} y_{2}$;
(ii) $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} x_{2}+y_{1} y_{2}$;
(iii) $\langle\mathbf{x}, \mathbf{y}\rangle=2 x_{1} y_{1}+3 x_{2} y_{2}$.
(b) Let V be an inner-product space with inner product \langle, \rangle. Define the norm, $\|\mathbf{v}\|$, of an element $\mathbf{v} \in V$, and show that we have $|\langle\mathbf{v}, \mathbf{w}\rangle| \leq\|\mathbf{v}\|\|\mathbf{w}\|$ for all $\mathbf{v}, \mathbf{w} \in V$.

By applying this inequality in the space $V=C[0,1]$ with a suitable inner product, prove that

$$
\int_{0}^{1} \frac{e^{x}}{x+1} d x \leq\left(\frac{e^{2}-1}{4}\right)^{1 / 2}
$$

2. (a) Let V be an inner-product space with inner product \langle,$\rangle . What is meant by the angle$ between two non-zero vectors \mathbf{v} and \mathbf{w} in V ?

Suppose that \mathbf{v} and \mathbf{w} are vectors in V such that $\|\mathbf{v}\|=\|\mathbf{w}\|=1$ and the angle between \mathbf{v} and \mathbf{w} is $\pi / 4$. Calculate $\langle\mathbf{v}, \mathbf{w}\rangle$ and hence find $\|\mathbf{v}+\sqrt{2} \mathbf{w}\|$.

What is meant by saying that $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is an orthonormal basis of V ? Let \mathbf{v} be an element of V and $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ an orthonormal basis of V. Write down an expression for the coefficients c_{k} such that $\mathbf{v}=\sum_{k=1}^{n} c_{k} \mathbf{e}_{k}$.
(b) Apply the Gram-Schmidt procedure to find an orthonormal basis for the subspace W of \mathbb{R}^{4} (with the standard inner product) spanned by the vectors $(1,2,0,2),(1,3,1,1)$ and $(3,2,2,1)$.

Find the orthogonal projection of the vector $(0,0,0,1)$ on W.
3. (a) Let V be an inner-product space and let W be a subspace of V. Suppose that for $\mathbf{v} \in V$ and $\mathbf{w} \in W$ the condition $\langle\mathbf{v}-\mathbf{w}, \mathbf{x}\rangle=0$ holds for all $\mathbf{x} \in W$. Show that $\|\mathbf{v}-\mathbf{w}\| \leq\|\mathbf{v}-\mathbf{y}\|$ for all $\mathbf{y} \in W$.

Suppose further that W has basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ (not necessarily orthonormal), and that $\mathbf{w}=c_{1} \mathbf{w}_{1}+\ldots+c_{n} \mathbf{w}_{n}$. Derive the normal equations satisfied by c_{1}, \ldots, c_{n}.
(b) A quantity z should theoretically depend on the variables x and y by means of the formula $z=a x+b y+c x y$. Find the values of the constants a, b and c so that the formula best fits the following experimental data, in the sense of least squares approximation:

	x	y	z
First measurement	1	0	2.0
Second measurement	0	1	3.0
Third measurement	1	1	3.0
Fourth measurement	2	0	1.5

4. (a) State the axioms for a metric space.

For functions $f, g \in C[0,2]$ define

$$
d_{1}(f, g)=\int_{0}^{2}|f(t)-g(t)| d t
$$

Show that d_{1} is a metric on $C[0,2]$.
(b) What is meant by saying that a sequence $\left(x_{n}\right)$ in a metric space (X, d) is (i) convergent, and (ii) Cauchy? Prove that every convergent sequence is Cauchy.

Give the definition of a complete metric space.
Let $\left(f_{n}\right)$ be the sequence of functions in $C[0,2]$ given by

$$
f_{n}(t)= \begin{cases}t^{n} & \text { if } 0 \leq t \leq 1 \\ 1 & \text { if } 1 \leq t \leq 2\end{cases}
$$

Show that $\left(f_{n}\right)$ is a Cauchy sequence in the metric space $\left(C[0,2], d_{1}\right)$. Suppose now that $\left(f_{n}\right)$ tends to a limit $f \in C[0,2]$. Calculate $\int_{0}^{1}|f(t)| d t$ and $\int_{1}^{2}|1-f(t)| d t$, and deduce that $\left(C[0,2], d_{1}\right)$ is incomplete.
5. (a) Let $\phi: X \rightarrow X$ be a mapping on a metric space (X, d). Define what is meant by saying that ϕ is a contraction mapping.
(b) State and prove the Contraction Mapping Theorem for a complete metric space (X, d).
(c) Show that the equation

$$
x^{4}-x^{2}+5=7 x
$$

has precisely one solution in the interval $[-1,1]$.

END

