MATH-316301
This question paper consists of 3 printed pages, each of which is identified by the reference MATH 316301
(c) UNIVERSITY OF LEEDS

Examination for the Module MATH 3163
(January 2005)

COMPUTABILITY AND UNSOLVABILITY

Time allowed : 3 hours

Do not answer more than $F O U R$ questions.
All questions carry equal marks.

1. (a) (i) Show that $f(m, n)=m+n$, and

$$
\overline{s g}(n)= \begin{cases}0 & \text { if } n>0, \\ 1 & \text { if } n=0,\end{cases}
$$

are primitive recursive functions.
(ii) Show that if given sets A and B are primitive recursive, then so is their set theoretic union $A \cup B$.
(b) Write Turing programs for $f(m, n)=m+n$ and $\overline{s g}(n)$, and briefly explain why each program works.
(c) Describe briefly how it is possible to effectively list all Turing programs:

$$
P_{0}, P_{1}, \ldots, P_{e}, \ldots
$$

Prove the Enumeration Theorem: There exists a partial computable function $\varphi_{z}(x)$ (of x and z) such that, for each $e \in \mathbb{N}, \varphi_{e}$ is the $e^{\text {th }}$ (unary) partial computable function.

Deduce that there exists a Universal Turing Machine U which, if given input (e, x), simulates the $e^{\text {th }}$ Turing machine with input x (that is, $\varphi_{U}^{(2)}(e, x)=\varphi_{e}(x)$ for all $x \in \mathbb{N}$).
2. (a) For each $e \in \mathbb{N}$, we define computable approximations for φ_{e} (the $e^{\text {th }}$ partial computable function in some standard listing) by:

$$
\varphi_{e, s}(x)=y \Longleftrightarrow_{\text {defn. }} \begin{aligned}
& x, y, e<s, \text { and } y \text { is the output of } \varphi_{e}(x) \\
& \text { in }<s \text { steps of the Turing program } P_{e} .
\end{aligned}
$$

Show that $\varphi_{e, s}(x) \downarrow$ (" $\varphi_{e, s}(x)$ is defined") is a computable relation over $e, s, x \in \mathbb{N}$,
(b) Define what is meant by saying that a set A is computably enumerable.

Prove the Normal Form Theorem giving the equivalence of the following three statements:
i) A is computably enumerable,
ii) A is a Σ_{1}^{0} set,
iii) A is the domain of some p.c. function φ_{e}.
(c) Show that:
(i) $\varphi_{x}(x) \downarrow$ is a Σ_{1}^{0} relation, but
(ii) $\varphi_{x}(x) \downarrow$ is not a computable relation.

Deduce that there exists a c.e. set which is not computable.
[You may assume in part (c) that if a set A is computable, then it is also computably enumerable.]
3. (a) Define: $A \subseteq \mathbb{N}$ is simple.
(i) Show that no simple set is computable.
(ii) Show that if A is a simple set and W is an infinite c.e. set then $A \cap W$ is an infinite c.e. set.
(iii) Deduce that if A and B are simple sets then $A \cap B$ is also simple.
[You may assume that the intersection $X \cap Y$ of two computably enumerable sets X and Y is also computably enumerable.]
(b) For $A, B, C \subseteq \mathbb{N}$ define : $A \leq_{m} B$ (A is many-one reducible to B); C is creative.
(i) Prove that if A is a c.e. set and ψ is a partial computable function, then $\psi^{-1}(A)$ is also c.e.
(ii) Show that if C is creative, and A is a c.e. set such that $C \leq_{m} A$, then A is also creative.
4. (a) Define what is meant by the m-degree of a set $A \subseteq \mathbb{N}$, and define the partial ordering \leq on the set of all m-degrees.
(i) Let $\left\{W_{i}\right\}_{i \in \mathbb{N}}$ be the usual listing of the computably enumerable sets.

Show that $A \subseteq \mathbb{N}$ is computably enumerable if and only if $A \leq_{m} K_{0}$, where K_{0} is defined by

$$
K_{0}=\left\{\langle x, y\rangle \mid x \in W_{y}\right\} .
$$

(ii) Let $\mathbf{0}_{m}^{\prime}=\operatorname{deg}_{m}\left(K_{0}\right)$.

Show that the following are equivalent:
(a) $\mathbf{a}_{m} \leq \mathbf{0}_{m}^{\prime}$.
(b) \mathbf{a}_{m} is computably enumerable.
(c) Every $A \in \mathbf{a}_{m}$ is computably enumerable.

Deduce that $\mathbf{0}_{m}^{\prime}>\mathbf{0}_{m}$, and $\mathbf{0}_{m}^{\prime}$ is the greatest computably enumerable m-degree.
(b) Define the notions $A \leq_{T} B$ (that is, A is Turing reducible to B), and $A \equiv_{T} B$ (that is, A is Turing equivalent to B), where $A, B \subseteq \mathbb{N}$.

Let a be a Turing degree.
(i) Show that $\{X \subseteq \mathbb{N} \mid X \in \mathbf{a}\}$ is a countably infinite set.
(ii) Show that $\{\mathbf{b} \mid \mathbf{b} \leq \mathbf{a}\}$ is countable.
(iii) Show, however, that \mathcal{D} ($=$ the set of all Turing degrees) is uncountable.

Deduce that there is no greatest member of \mathcal{D}.

5. Either:

(a) Show that there exists an infinite sequence $\mathbf{a}_{0}, \mathbf{a}_{1}, \ldots$ of degrees $\leq \mathbf{0}^{\prime}$ such that for each $i \neq j$ we have $\mathbf{a}_{i} \mid \mathbf{a}_{j}$ (that is, \mathbf{a}_{i} is incomparable with \mathbf{a}_{j}).

Or:

(b) Outline briefly a proof of the Friedberg-Muchnik Theorem:

There exists a pair \mathbf{a}, \mathbf{b} of incomparable computably enumerable Turing degrees .
6. Write an essay, covering approximately two to three pages, describing the background to, and consequences of, Alan Turing's discovery of the existence of a Universal Turing Machine.

Your answer should contain enough mathematical content to show a good grasp of the notions and results involved, and enough discussion of these to show an understanding of the broader context.

