MATH-316301

This question paper consists of 3 printed pages, each of which is identified by the reference MATH 316301

No calculators allowed

© UNIVERSITY OF LEEDS

Examination for the Module MATH 3163 (January 2005)

COMPUTABILITY AND UNSOLVABILITY

Time allowed : 3 hours

Do not answer more than *FOUR* questions.

All questions carry equal marks.

1. (a) (i) Show that f(m, n) = m + n, and

$$\overline{sg}(n) = \begin{cases} 0 & \text{if } n > 0, \\ 1 & \text{if } n = 0, \end{cases}$$

are primitive recursive functions.

(ii) Show that if given sets A and B are primitive recursive, then so is their set theoretic union $A \cup B$.

(b) Write Turing programs for f(m, n) = m + n and $\overline{sg}(n)$, and briefly explain why each program works.

(c) Describe *briefly* how it is possible to effectively list all Turing programs:

$$P_0, P_1, \ldots, P_e, \ldots$$

Prove the *Enumeration Theorem*: There exists a partial computable function $\varphi_z(x)$ (of x and z) such that, for each $e \in \mathbb{N}$, φ_e is the e^{th} (unary) partial computable function.

Deduce that there exists a Universal Turing Machine U which, if given input (e, x), simulates the e^{th} Turing machine with input x (that is, $\varphi_U^{(2)}(e, x) = \varphi_e(x)$ for all $x \in \mathbb{N}$).

continued ...

2. (a) For each $e \in \mathbb{N}$, we define computable approximations for φ_e (the e^{th} partial computable function in some standard listing) by:

 $\varphi_{e,s}(x) = y \iff_{\text{defn.}} x, y, e < s, \text{ and } y \text{ is the output of } \varphi_e(x)$ in < s steps of the Turing program P_e .

Show that $\varphi_{e,s}(x) \downarrow ("\varphi_{e,s}(x) \text{ is defined"})$ is a computable relation over $e, s, x \in \mathbb{N}$,

(b) Define what is meant by saying that a set A is computably enumerable.

Prove the *Normal Form Theorem* giving the equivalence of the following three statements:

- i) A is computably enumerable,
- ii) A is a Σ_1^0 set,
- iii) A is the domain of some p.c. function φ_e .
- (c) Show that:
 - (i) $\varphi_x(x) \downarrow$ is a Σ_1^0 relation, but
 - (ii) $\varphi_x(x) \downarrow$ is not a computable relation.

Deduce that there exists a c.e. set which is not computable.

[You may assume in part (c) that if a set A is computable, then it is also computably enumerable.]

3. (a) Define: $A \subseteq \mathbb{N}$ is simple.

(i) Show that no simple set is computable.

(ii) Show that if A is a simple set and W is an infinite c.e. set then $A \cap W$ is an infinite c.e. set.

(iii) Deduce that if A and B are simple sets then $A \cap B$ is also simple.

[You may assume that the intersection $X \cap Y$ of two computably enumerable sets X and Y is also computably enumerable.]

(b) For $A, B, C \subseteq \mathbb{N}$ define : $A \leq_m B$ (A is many-one reducible to B); C is creative.

(i) Prove that if A is a c.e. set and ψ is a partial computable function, then $\psi^{-1}(A)$ is also c.e.

(ii) Show that if C is creative, and A is a c.e. set such that $C \leq_m A$, then A is also creative.

continued ...

- 4. (a) Define what is meant by the *m*-degree of a set $A \subseteq \mathbb{N}$, and define the partial ordering \leq on the set of all *m*-degrees.
 - (i) Let $\{W_i\}_{i \in \mathbb{N}}$ be the usual listing of the computably enumerable sets.

Show that $A \subseteq \mathbb{N}$ is computably enumerable if and only if $A \leq_m K_0$, where K_0 is defined by

$$K_0 = \{ \langle x, y \rangle \mid x \in W_y \}.$$

(ii) Let $0'_m = \deg_m(K_0)$.

Show that the following are equivalent:

(a) $\mathbf{a}_m \leq \mathbf{0}'_m$.

(b) \mathbf{a}_m is computably enumerable.

(c) Every $A \in \mathbf{a}_m$ is computably enumerable.

Deduce that $\mathbf{0}'_m > \mathbf{0}_m$, and $\mathbf{0}'_m$ is the *greatest* computably enumerable m-degree.

(b) Define the notions $A \leq_T B$ (that is, A is Turing reducible to B), and $A \equiv_T B$ (that is, A is Turing equivalent to B), where $A, B \subseteq \mathbb{N}$.

Let **a** be a Turing degree.

- (i) Show that $\{X \subseteq \mathbb{N} \mid X \in \mathbf{a}\}$ is a countably infinite set.
- (ii) Show that $\{\mathbf{b} \mid \mathbf{b} \leq \mathbf{a}\}$ is countable.
- (iii) Show, however, that \mathcal{D} (= the set of all Turing degrees) is uncountable.

Deduce that there is no greatest member of \mathcal{D} .

5. Either:

(a) Show that there exists an infinite sequence $\mathbf{a}_0, \mathbf{a}_1, \ldots$ of degrees $\leq \mathbf{0}'$ such that for each $i \neq j$ we have $\mathbf{a}_i \mid \mathbf{a}_j$ (that is, \mathbf{a}_i is incomparable with \mathbf{a}_j).

Or:

(b) Outline briefly a proof of the *Friedberg-Muchnik Theorem*:

There exists a pair \mathbf{a}, \mathbf{b} of incomparable computably enumerable Turing degrees .

6. Write an essay, covering approximately *two to three pages*, describing the background to, and consequences of, Alan Turing's discovery of the existence of a Universal Turing Machine.

Your answer should contain enough mathematical content to show a good grasp of the notions and results involved, and enough discussion of these to show an understanding of the broader context.

\mathbf{END}