# c UNIVERSITY OF LEEDS 

Examination for the Module MATH-3112
(January 2007)

## Differential Geometry 1

Time allowed: 2 hours

Do not answer more than four questions.
All questions carry equal marks.

Throughout this paper, by 'surface' we shall mean 'smooth regular embedded m-surface in $\mathbb{R}^{n}$ for some positive integers $m$ and $n$.

1. (a) Let $\gamma:[0, b] \rightarrow \mathbb{R}^{2}$ be a smooth unit speed parametrized curve and let $s \in[0, b]$. What is meant by (i) the unit positive tangent of $\gamma$ at $s$, (ii) the unit positive normal of $\gamma$ at $s$, the signed curvature $\kappa(s)$ of $\gamma$ at $s$ ?

Let $\theta:[0, b] \rightarrow \mathbb{R}$ be a smooth function such that $\gamma^{\prime}(s)=(\cos \theta(s), \sin \theta(s)) \quad(s \in[0, b])$. Show that $\kappa(s)=\theta^{\prime}(s) \quad(s \in[0, b])$.

Now assume that $\gamma$ is closed. Show that the total curvature $\int_{0}^{b} \kappa(s) \mathrm{d} s$ of $\gamma$ is given by $\theta(b)-\theta(0)$, and define the rotation index of $\gamma$ (you need not show that it is an integer). What is meant by the rotation index of a smooth closed regular parametrized curve which is not of unit speed?
(b) Let $\gamma(t)=(r \sin b t, r \cos b t) \quad(t \in[0,2 \pi])$, where $r$ and $b$ are positive real constants. Calculate the rotation index of $\gamma$.
(c) By using part (b) and finding a suitable regular homotopy, or otherwise, find the rotation index of the closed curve $\alpha:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ given by

$$
\alpha(t)=(4 \sin 3 t-\sin t, 4 \cos 3 t-\cos t) \quad(t \in[0,2 \pi])
$$

2. (a) Let $n$ and $k$ be positive integers with $k \leq n$ and let $f: W \rightarrow \mathbb{R}^{k}$ be a smooth map from an open subset $W$ of $\mathbb{R}^{n}$ to $\mathbb{R}^{k}$. Say what is meant by (i) $p \in W$ is a regular point of $f$, (ii) $p \in W$ is a critical point of $f$, (iii) $c \in f(W)$ is a regular value of $f$.

Define a smooth mapping $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ by $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{2}+x_{2}^{2}, 2 x_{3}-x_{4}\right)$. Find the critical points of $f$ and show that $(1,0)$ is a regular value. Deduce that

$$
M=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}^{2}+x_{2}^{2}=1, x_{4}=2 x_{3}\right\}
$$

is a smooth regular embedded 2 -surface in $\mathbb{R}^{4}$.
(b) Let $X: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ be the smooth map defined by $X\left(u_{1}, u_{2}\right)=\left(\cos u_{1}, \sin u_{1}, u_{2}, 2 u_{2}\right)$. Show that $X$ is regular and has image the 2 -surface $M$ above. Show that $X$ is not injective on $\mathbb{R}^{2}$. Find a maximal open subset of $\mathbb{R}^{2}$ on which it is injective.
3. (a) Let $f: M \rightarrow M^{\prime}$ be a smooth map between surfaces, and let $p \in M$. Define the differential $\mathrm{d} f_{p}: T_{p} M \rightarrow T_{f(p)} M^{\prime}$ of $f$ at $p$. Let $g: M^{\prime} \rightarrow M^{\prime \prime}$ be another smooth map between surfaces and let $p \in M$. Show that $\mathrm{d}(g \circ f)_{p}=\mathrm{d} g_{f(p)} \circ \mathrm{d} f_{p}$.
(b) Let $f: M \rightarrow M^{\prime}$ be a smooth map between surfaces. Define what is meant by $f$ is a (i) local isometry, (ii) global isometry.

What is meant by the distance $d(p, q)$ between two points $p$ and $q$ on a surface $M$ ?
Define regular maps $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $\phi(u, v)=(\sinh v \sin u,-\sinh v \cos u, u)$ and $\psi(u, v)=(\cosh v \cos u, \cosh v \sin u, v)$. Let $H$ denote the image of $\phi$ and $C$ the image of $\psi$. Define a map $f: H \rightarrow C$ by

$$
f(\phi(u, v))=\psi(u, v) \quad\left((u, v) \in \mathbb{R}^{2}\right) .
$$

Show that this is (i) well defined, (ii) a local isometry, (iii) not a global isometry. Show that there are points $p, q \in H$ such that $d(f(p), f(q)) \neq d(p, q)$.
[You may use the fact that a smooth map $f: M \rightarrow M^{\prime}$ is a local isometry if and only if, for each $p \in M$, there is a basis $\left\{\mathbf{e}_{i}\right\}$ such that $\left.\mathrm{d} f_{p}\left(\mathbf{e}_{i}\right) \cdot \mathrm{d} f_{p}\left(\mathbf{e}_{j}\right)=\mathbf{e}_{i} \cdot \mathbf{e}_{j} \quad(i, j=1,2).\right]$
4. (a) Let $f: M \rightarrow M^{\prime}$ be a smooth map between 2-surfaces. Say what is meant by $f$ is conformal with scale factor $\lambda$. Show that a smooth map $f: M \rightarrow M^{\prime}$ is conformal with scale factor $\lambda$ if and only if

$$
\mathrm{d} f_{p}(\mathbf{v}) \cdot \mathrm{d} f_{p}(\mathbf{w})=\lambda(p)^{2} \mathbf{v} \cdot \mathbf{w} \quad\left(p \in M, \mathbf{v}, \mathbf{w} \in T_{p} M\right) .
$$

Hence show that a smooth map $f: M \rightarrow M^{\prime}$ is conformal with scale factor $\lambda$ if and only if, for all $p \in M$, there exists a basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ of $T_{p} M$ such that $\left|\mathrm{d} f_{p}\left(\mathbf{e}_{i}\right)\right|=\lambda(p)\left|\mathbf{e}_{i}\right| \quad(i=1,2)$ and $\mathrm{d} f_{p}\left(\mathbf{e}_{1}\right) \cdot \mathrm{d} f_{p}\left(\mathbf{e}_{2}\right)=\lambda(p)^{2} \mathbf{e}_{1} \cdot \mathbf{e}_{2}$.
(b) Let $S^{2}=\left\{(X, Y, Z) \in \mathbb{R}^{3}: X^{2}+Y^{2}+Z^{2}=1\right\}$. Define a smooth map $f: \mathbb{R}^{2} \rightarrow S^{2}$ by

$$
f(x, y)=\frac{1}{1+x^{2}+y^{2}}\left(2 x, 2 y, 1-x^{2}-y^{2}\right) \quad\left((x, y) \in \mathbb{R}^{2}\right)
$$

Show that $\phi$ is conformal and determine its scale factor $\lambda: \mathbb{R}^{2} \rightarrow(0, \infty)$.
Show that $f$ does not map any non-constant parametrized geodesic in $\mathbb{R}^{2}$ to a parametrized geodesic on $S^{2}$.
5. (a) Let $M$ be a 2 -surface in $\mathbb{R}^{3}$. Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ be a basis for the tangent space at a point $p$ of $M$. Write $E=\mathbf{e}_{1} \cdot \mathbf{e}_{1}, F=\mathbf{e}_{1} \cdot \mathbf{e}_{2}=\mathbf{e}_{2} \cdot \mathbf{e}_{1}, G=\mathbf{e}_{2} \cdot \mathbf{e}_{2}, L=S\left(\mathbf{e}_{1}\right) \cdot \mathbf{e}_{1}, M=S\left(\mathbf{e}_{1}\right) \cdot \mathbf{e}_{2}=$ $S\left(\mathbf{e}_{2}\right) \cdot \mathbf{e}_{1}, N=S\left(\mathbf{e}_{2}\right) \cdot \mathbf{e}_{2}$, where $S$ is the shape operator of $M$ at $p$. Show that the Gauss curvature $K(p)$ of $M$ at $p$ is given by

$$
K(p)=\frac{L N-M^{2}}{E G-F^{2}} .
$$

(b) Let $M$ be a 2-surface in $\mathbb{R}^{3}$. What is meant by a property is (A) intrinsic, (B) extrinsic. State two extrinsic properties of a surface. (You need not justify your answer.)

State the Theorema Egregium of Gauss.
(c) Let $M$ be a closed 2-surface in $\mathbb{R}^{3}$. Explain briefly what is meant by the (i) total curvature, (ii) the Euler characteristic of $M$. (You need not define what is meant by a triangulation or show that the Euler characteristic is well defined.)

State the Gauss-Bonnet Theorem.

Use the Gauss-Bonnet Theorem to show that the Gauss curvature of a closed orientable 2 -surface of genus 2 cannot be identically zero.

## END

