MATH-311201

This question paper consists of 3 printed pages, each of which is identified by the reference MATH-311201

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH–3112

(January 2007)

Differential Geometry 1

Time allowed: 2 hours

Do not answer more than **four** questions. All questions carry equal marks.

Throughout this paper, by 'surface' we shall mean 'smooth regular embedded m-surface in \mathbb{R}^n for some positive integers m and n'.

1. (a) Let $\gamma : [0, b] \to \mathbb{R}^2$ be a smooth unit speed parametrized curve and let $s \in [0, b]$. What is meant by (i) the *unit positive tangent* of γ at s, (ii) the *unit positive normal* of γ at s, the signed curvature $\kappa(s)$ of γ at s?

Let $\theta : [0, b] \to \mathbb{R}$ be a smooth function such that $\gamma'(s) = (\cos \theta(s), \sin \theta(s))$ $(s \in [0, b])$. Show that $\kappa(s) = \theta'(s)$ $(s \in [0, b])$.

Now assume that γ is closed. Show that the total curvature $\int_0^b \kappa(s) \, ds$ of γ is given by $\theta(b) - \theta(0)$, and define the *rotation index* of γ (you need not show that it is an integer). What is meant by the rotation index of a smooth closed regular parametrized curve which is not of unit speed?

(b) Let $\gamma(t) = (r \sin bt, r \cos bt)$ $(t \in [0, 2\pi])$, where r and b are positive real constants. Calculate the rotation index of γ .

(c) By using part (b) and finding a suitable regular homotopy, or otherwise, find the rotation index of the closed curve $\alpha : [0, 2\pi] \to \mathbb{R}^2$ given by

$$\alpha(t) = (4\sin 3t - \sin t, 4\cos 3t - \cos t) \qquad (t \in [0, 2\pi]).$$

2. (a) Let n and k be positive integers with $k \leq n$ and let $f: W \to \mathbb{R}^k$ be a smooth map from an open subset W of \mathbb{R}^n to \mathbb{R}^k . Say what is meant by (i) $p \in W$ is a regular point of f, (ii) $p \in W$ is a critical point of f, (iii) $c \in f(W)$ is a regular value of f.

Define a smooth mapping $f : \mathbb{R}^4 \to \mathbb{R}^2$ by $f(x_1, x_2, x_3, x_4) = (x_1^2 + x_2^2, 2x_3 - x_4)$. Find the critical points of f and show that (1, 0) is a regular value. Deduce that

$$M = \{(x_1, x_2, x_3, x_4) : x_1^2 + x_2^2 = 1, x_4 = 2x_3\}$$

is a smooth regular embedded 2-surface in \mathbb{R}^4 .

(b) Let $X : \mathbb{R}^2 \to \mathbb{R}^4$ be the smooth map defined by $X(u_1, u_2) = (\cos u_1, \sin u_1, u_2, 2u_2)$. Show that X is regular and has image the 2-surface M above. Show that X is not injective on \mathbb{R}^2 . Find a maximal open subset of \mathbb{R}^2 on which it is injective.

3. (a) Let $f : M \to M'$ be a smooth map between surfaces, and let $p \in M$. Define the differential $df_p : T_pM \to T_{f(p)}M'$ of f at p. Let $g : M' \to M''$ be another smooth map between surfaces and let $p \in M$. Show that $d(g \circ f)_p = dg_{f(p)} \circ df_p$.

(b) Let $f: M \to M'$ be a smooth map between surfaces. Define what is meant by f is a (i) *local isometry*, (ii) *global isometry*.

What is meant by the distance d(p,q) between two points p and q on a surface M?

Define regular maps $\phi : \mathbb{R}^2 \to \mathbb{R}^3$ and $\psi : \mathbb{R}^2 \to \mathbb{R}^3$ by $\phi(u, v) = (\sinh v \sin u, -\sinh v \cos u, u)$ and $\psi(u, v) = (\cosh v \cos u, \cosh v \sin u, v)$. Let *H* denote the image of ϕ and *C* the image of ψ . Define a map $f : H \to C$ by

$$f(\phi(u,v)) = \psi(u,v) \qquad ((u,v) \in \mathbb{R}^2).$$

Show that this is (i) well defined, (ii) a local isometry, (iii) not a global isometry. Show that there are points $p, q \in H$ such that $d(f(p), f(q)) \neq d(p, q)$.

[You may use the fact that a smooth map $f: M \to M'$ is a local isometry if and only if, for each $p \in M$, there is a basis $\{\mathbf{e}_i\}$ such that $df_p(\mathbf{e}_i) \cdot df_p(\mathbf{e}_j) = \mathbf{e}_i \cdot \mathbf{e}_j$ (i, j = 1, 2).]

4. (a) Let $f: M \to M'$ be a smooth map between 2-surfaces. Say what is meant by f is conformal with scale factor λ . Show that a smooth map $f: M \to M'$ is conformal with scale factor λ if and only if

$$\mathrm{d}f_p(\mathbf{v}) \cdot \mathrm{d}f_p(\mathbf{w}) = \lambda(p)^2 \,\mathbf{v} \cdot \mathbf{w} \qquad (p \in M, \ \mathbf{v}, \mathbf{w} \in T_p M) \,.$$

Hence show that a smooth map $f: M \to M'$ is conformal with scale factor λ if and only if, for all $p \in M$, there exists a basis $\{\mathbf{e}_1, \mathbf{e}_2\}$ of T_pM such that $|\mathrm{d}f_p(\mathbf{e}_i)| = \lambda(p) |\mathbf{e}_i|$ (i = 1, 2)and $\mathrm{d}f_p(\mathbf{e}_1) \cdot \mathrm{d}f_p(\mathbf{e}_2) = \lambda(p)^2 \mathbf{e}_1 \cdot \mathbf{e}_2$.

(b) Let $S^2 = \{(X, Y, Z) \in \mathbb{R}^3 : X^2 + Y^2 + Z^2 = 1\}$. Define a smooth map $f : \mathbb{R}^2 \to S^2$ by

$$f(x,y) = \frac{1}{1+x^2+y^2} \left(2x, 2y, 1-x^2-y^2\right) \qquad \left((x,y) \in \mathbb{R}^2\right).$$

Show that ϕ is conformal and determine its scale factor $\lambda : \mathbb{R}^2 \to (0, \infty)$.

Show that f does not map any non-constant parametrized geodesic in \mathbb{R}^2 to a parametrized geodesic on S^2 .

5. (a) Let M be a 2-surface in \mathbb{R}^3 . Let $\{\mathbf{e}_1, \mathbf{e}_2\}$ be a basis for the tangent space at a point p of M. Write $E = \mathbf{e}_1 \cdot \mathbf{e}_1$, $F = \mathbf{e}_1 \cdot \mathbf{e}_2 = \mathbf{e}_2 \cdot \mathbf{e}_1$, $G = \mathbf{e}_2 \cdot \mathbf{e}_2$, $L = S(\mathbf{e}_1) \cdot \mathbf{e}_1$, $M = S(\mathbf{e}_1) \cdot \mathbf{e}_2 = S(\mathbf{e}_2) \cdot \mathbf{e}_1$, $N = S(\mathbf{e}_2) \cdot \mathbf{e}_2$, where S is the shape operator of M at p. Show that the Gauss curvature K(p) of M at p is given by

$$K(p) = \frac{LN - M^2}{EG - F^2} \,.$$

(b) Let M be a 2-surface in \mathbb{R}^3 . What is meant by a property is (A) *intrinsic*, (B) *extrinsic*. State *two* extrinsic properties of a surface. (You need not justify your answer.)

State the *Theorema Egregium* of Gauss.

(c) Let M be a closed 2-surface in \mathbb{R}^3 . Explain briefly what is meant by the (i) *total* curvature, (ii) the Euler characteristic of M. (You need not define what is meant by a triangulation or show that the Euler characteristic is well defined.)

State the Gauss-Bonnet Theorem.

Use the Gauss–Bonnet Theorem to show that the Gauss curvature of a closed orientable 2-surface of genus 2 cannot be identically zero.

END