MATH-311201

This question paper consists of 3 printed pages, each of which is identified by the reference MATH–311201

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-3112

(January 2005)

Differential Geometry 1

Time allowed: 2 hours

Do not answer more than **four** questions.

All questions carry equal marks.

Throughout this paper, by 'surface' we shall mean 'smooth regular embedded m-surface in \mathbb{R}^n for some positive integers m and n'.

1. (a) Let $\gamma:[0,b]\to\mathbb{R}^2$ be a smooth unit speed parametrized curve. (i) What is meant by γ is closed? (ii) Define the signed curvature $\kappa(s)$ of γ at $s\in[0,b]$.

Let $\theta: [0,b] \to \mathbb{R}$ be a smooth function such that $\gamma'(s) = (\cos \theta(s), \sin \theta(s))$ $(s \in [0,b])$. Show that $\kappa(s) = \theta'(s)$ $(s \in [0,b])$.

Hence show that the total curvature $\int_0^b \kappa(s) ds$ of γ is given by $\theta(b) - \theta(0)$, and define the rotation index of γ [you need not show that it is an integer].

- (b) Let $\gamma(t) = (6\cos 2t, -6\sin 2t)$ $(t \in [0, 3\pi])$. Calculate the total curvature of γ and thus its rotation index.
- (c) By using part (b) and finding a suitable regular homotopy or otherwise, show that the rotation index of the closed curve $\alpha:[0,3\pi]\to\mathbb{R}^2$ given by

$$\alpha(t) = (6\cos 2t + 2\sin 4t, -6\sin 2t + 2\cos 4t) \qquad (t \in [0, 3\pi])$$

is -3.

2. (a) Let $f: W \to \mathbb{R}^k$ be a smooth map from an open subset of \mathbb{R}^n to \mathbb{R}^k where n and k are positive integers with $k \le n$. Say what is meant by $p \in W$ is a regular point. Let $c \in f(W)$. State a condition on c which ensures that $f^{-1}(c)$ is a (smooth regular embedded) m-surface in \mathbb{R}^n for some m, giving the value of m in terms of n and k.

Hence show that $S_c = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = c\}$ is a smooth 2-surface if $c \neq 0$.

By calculating the shape operator or otherwise, show that the surface S_1 has Gauss curvature -1 at the point (1,0,0).

- (b) For any $c \in \mathbb{R}$, let $M_c = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1, x_1 + x_3 = c\}$. Show that M_c is empty if $|c| > \sqrt{2}$ and is a nonempty (smooth regular embedded) 2-surface in \mathbb{R}^4 if $|c| < \sqrt{2}$.
- **3.** (a) Let $f: M \to M'$ be a smooth map between surfaces, and let $p \in M$. Define the differential $\mathrm{d} f_p: T_pM \to T_{f(p)}M'$ of f at p. Let $g: M' \to M''$ be another smooth map between surfaces and let $p \in M$. Show that $\mathrm{d} (g \circ f)_p = \mathrm{d} g_{f(p)} \circ \mathrm{d} f_p$.
 - (b) Let $f: M \to M'$ be a smooth map between surfaces. Define what is meant by f is a local isometry. Let C be the cylinder $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$. Show that the map $f: \mathbb{R}^2 \to C$ defined by $f(u_1, u_2) = (\cos u_1, \sin u_1, u_2)$ is a local isometry.

Let S be the cone $\{(x,y,z) \in \mathbb{R}^3 : a^2x^2 + a^2y^2 = z^2\}$ where a > 0. Define a map $f: \mathbb{R}^2 \setminus \{(0,0)\} \to S$ by $f(r\cos\theta, r\sin\theta) = (br\cos2\theta, br\sin2\theta, abr)$ where b > 0. Show that f is a local isometry if and only if $a = \sqrt{3}$ and b = 1/2.

[You may use the fact that a smooth map $f: M \to M'$ is a local isometry if and only if, for each $p \in M$, there is an orthonormal basis $\{\mathbf{e}_i\}$ such that $\{\mathrm{d}f_p(\mathbf{e}_i)\}$ is orthonormal.]

4. (a) Let $f: M \to M'$ be a smooth map between 2-surfaces. Say what is meant by f is conformal with scale factor λ . Show that a smooth map $f: M \to M'$ is conformal with scale factor λ if and only if

$$\mathrm{d}f_p(\mathbf{v})\cdot\mathrm{d}f_p(\mathbf{w}) = \lambda(p)^2\,\mathbf{v}\cdot\mathbf{w} \qquad (p\in M,\ \mathbf{v},\mathbf{w}\in T_pM).$$

Hence show that a smooth map $f: M \to M'$ is conformal with scale factor λ if and only if, for all $p \in M$, there exists a basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ of T_pM such that $|\mathrm{d}f_p(\mathbf{v}_i)| = \lambda(p) |\mathbf{v}_i|$ (i = 1, 2) and $\mathrm{d}f_p(\mathbf{v}_1) \cdot \mathrm{d}f_p(\mathbf{v}_2) = \lambda(p)^2 \mathbf{v}_1 \cdot \mathbf{v}_2$.

(b) Let $\phi: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \setminus \{(0,0)\}$ be defined by

$$\phi(x,y) = \frac{1}{(x^2 + y^2)^k} (x,y)$$

where k is a positive constant. Show that ϕ is conformal if and only if k=1. Determine the scale factor of ϕ in this case.

- **5.** (a) Let $f: M \to M'$ be a local isometry between surfaces and let $\alpha: I \to M$ be a smooth curve. Show that the length of α is equal to the length of $f \circ \alpha$.
 - (b) Let M be a 2-surface in \mathbb{R}^3 . What is meant by a property is (A) *intrinsic*, (B) *extrinsic*. For each of the following properties of M, state which is intrinsic and which is extrinsic, giving a brief reason: (i) principal curvatures; (ii) mean curvature; (iii) length of curves; (iv) Gauss curvature. [You may quote values of the principal curvatures of standard surfaces and the existence of local isometries between some of these surfaces without proof.]
 - (c) Let M be a closed 2-surface. Explain briefly what is meant by the (i) total curvature, (ii) the Euler characteristic of M [you need not define what is meant by a triangulation or show that the Euler characteristic is well defined].

State the Gauss-Bonnet Theorem.

Use the Gauss–Bonnet Theorem to determine (i) the total curvature of the surface

$$M = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + \frac{1}{3}y^2 + 2z^2 = 1 \right\},$$

(ii) the Euler characteristic of a closed surface whose total curvature is -4π .

END