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Do not answer more than FOUR questions.
All questions carry equal marks.

1. (a) For each of the following, either give an example, or explain why no such graph
exists:

(i) a bipartite graph which is 4-regular,

(ii) a Platonic graph which is bipartite,

(iii) a cubic graph on seven vertices.

(b) Say, giving reasons, whether the two graphs below are isomorphic or not:

(c) Define: G is connected, H is a component of G, for G a graph.
Show that if G is a simple graph on ν vertices with ε edges and c components, then

G satisfies
ε ≤ 1

2 (ν − c)(ν − c + 1) .

Say, giving reasons, whether there exists a disconnected simple graph with 7 vertices
and 16 edges.
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2. (a) Let G be a graph. Define: G is Eulerian, G is Hamiltonian.
Show that a connected graph G is Eulerian if and only if the degree of each vertex of

G is even.

[You may assume that every non-empty graph containing no vertices of degree < 2 contains
a closed chain.]

(b) Say, giving reasons, which of the graphs G1, G2 below are Hamiltonian:

G1 G2

(c) Show that no Hamilton circuit in the graph G1 below can contain both the edges e
and ê.

Hence show that no Hamilton circuit in the graph G2 can contain both the edges e
and ê.

Deduce that every Hamilton circuit in the graph G3 must contain the edge e.

G1 G2 G3

e e êê

e
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3. (a) Define: G is planar .
Prove Euler’s Formula for a connected plane graph G with ν vertices, ε edges and ϕ

faces:
ν − ε + ϕ = 2 .

(b) If G is a plane graph, define the dual graph G∗ of G.
Deduce that ν(G∗) = ϕ(G), ε(G∗) = ε(G) and dG∗(f∗) = dG(f) for each face of G

(where f∗ is the vertex of G∗ corresponding to f).
A plane graph is said to be self-dual if and only if it is isomorphic to its dual.

(i) Show that if G is self-dual, then ε = 2ν − 2.

(ii) Find a self-dual plane graph on 6 vertices.

(c) Show that for n = 5, Kn (the complete graph on n vertices) is not planar, but that
it can be embedded on the surface of a torus.

How would your answer change if n = 6? Justify your answer.

4. (a) Define the terms strongly connected and dicomponent for a digraph D.
Find the dicomponents for the digraph:

D1

(b) Let D1, D2, . . . , Dm be the dicomponents of a digraph D.

The condensation D̂ of D is a directed graph with m vertices w1, w2, . . . , wm; there
is an arc in D̂ with tail wi and head wj if and only if there is an arc in D with tail in Di

and head in Dj .

Sketch the condensation D̂1 of the digraph D1 in part (a).

Show that, in general, the condensation D̂ of a digraph D contains no directed circuits.

(c) Show by induction on the number of vertices of D, or otherwise, that a loopless
digraph D has an independent set S such that each vertex of D not in S is reachable from
a vertex in S by a dipath of length ≤ 2.

Deduce that a tournament T contains a vertex v from which every other vertex is
reachable by a dipath of length ≤ 2.
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5. (a) Prove the Five Colour Theorem.
[You should carefully state any results you use from the theory of planar graphs.]

(b) Find an embedding of the Heawood graph (below) on the torus.

Deduce that the chromatic number χ(T ) of a torus T is at least 7.
Use Heawood’s inequality

χ(S) ≤ [
1
2
(7 +

√
49 − 24n)]

for a surface S of Euler characteristic n < 2 to show that χ(T ) = 7.
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