MATH-303201
This question paper consists of 4 printed pages, each of which is identified by the reference MATH 303201

© UNIVERSITY OF LEEDS
 Examination for the Module MATH 3032
 (January 2005)

GRAPH THEORY

Time allowed : 2 hours

Do not answer more than $F O U R$ questions.

All questions carry equal marks.

1. (a) For each of the following, either give an example, or explain why no such graph exists:
(i) a bipartite graph which is 4-regular,
(ii) a Platonic graph which is bipartite,
(iii) a cubic graph on seven vertices.
(b) Say, giving reasons, whether the two graphs below are isomorphic or not:

(c) Define: G is connected, H is a component of G, for G a graph.

Show that if G is a simple graph on ν vertices with ε edges and c components, then G satisfies

$$
\varepsilon \leq \frac{1}{2}(\nu-c)(\nu-c+1) .
$$

Say, giving reasons, whether there exists a disconnected simple graph with 7 vertices and 16 edges.
2. (a) Let G be a graph. Define: G is Eulerian, G is Hamiltonian.

Show that a connected graph G is Eulerian if and only if the degree of each vertex of G is even.
[You may assume that every non-empty graph containing no vertices of degree <2 contains a closed chain.]
(b) Say, giving reasons, which of the graphs G_{1}, G_{2} below are Hamiltonian:

G_{1}

G_{2}
(c) Show that no Hamilton circuit in the graph G_{1} below can contain both the edges e and \widehat{e}.

Hence show that no Hamilton circuit in the graph G_{2} can contain both the edges e and \widehat{e}.

Deduce that every Hamilton circuit in the graph G_{3} must contain the edge e.

3. (a) Define: G is planar.

Prove Euler's Formula for a connected plane graph G with ν vertices, ε edges and φ faces:

$$
\nu-\varepsilon+\varphi=2 .
$$

(b) If G is a plane graph, define the dual graph G^{*} of G.

Deduce that $\nu\left(G^{*}\right)=\varphi(G), \varepsilon\left(G^{*}\right)=\varepsilon(G)$ and $d_{G^{*}}\left(f^{*}\right)=d_{G}(f)$ for each face of G (where f^{*} is the vertex of G^{*} corresponding to f).

A plane graph is said to be self-dual if and only if it is isomorphic to its dual.
(i) Show that if G is self-dual, then $\varepsilon=2 \nu-2$.
(ii) Find a self-dual plane graph on 6 vertices.
(c) Show that for $n=5, K_{n}$ (the complete graph on n vertices) is not planar, but that it can be embedded on the surface of a torus.

How would your answer change if $n=6$? Justify your answer.
4. (a) Define the terms strongly connected and dicomponent for a digraph D.

Find the dicomponents for the digraph:

(b) Let $D_{1}, D_{2}, \ldots, D_{m}$ be the dicomponents of a digraph D.

The condensation \widehat{D} of D is a directed graph with m vertices $w_{1}, w_{2}, \ldots, w_{m}$; there is an arc in \widehat{D} with tail w_{i} and head w_{j} if and only if there is an arc in D with tail in D_{i} and head in D_{j}.

Sketch the condensation \widehat{D}_{1} of the digraph D_{1} in part (a).
Show that, in general, the condensation \widehat{D} of a digraph D contains no directed circuits.
(c) Show by induction on the number of vertices of D, or otherwise, that a loopless digraph D has an independent set S such that each vertex of D not in S is reachable from a vertex in S by a dipath of length ≤ 2.

Deduce that a tournament T contains a vertex v from which every other vertex is reachable by a dipath of length ≤ 2.
5. (a) Prove the Five Colour Theorem.
[You should carefully state any results you use from the theory of planar graphs.]
(b) Find an embedding of the Heawood graph (below) on the torus.

Deduce that the chromatic number $\chi(T)$ of a torus T is at least 7 .
Use Heawood's inequality

$$
\chi(S) \leq\left[\frac{1}{2}(7+\sqrt{49-24 n})\right]
$$

for a surface S of Euler characteristic $n<2$ to show that $\chi(T)=7$.

END

