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Throughout this examination paper, replacing a subscript by a • denotes that the subscript has
been summed over. A bar over a quantity indicates that averaging has taken place. For example,
given dataYij for i = 1, . . . , t andj = 1, . . . , n, use the notation

Yi• =
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j=1

Yij, Y•• =
t∑

i=1

n∑

j=1

Yij,

Y i• =
1

n

n∑

j=1

Yij, and Y •• =
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nt

t∑

i=1

n∑

j=1

Yij.

1 CONTINUED...



MATH2730

1. Consider the one-way fixed and random effects ANOVA models

FIXED Yij = µ + αi + εij

∑t

i=1 αi = 0,

RANDOM Yij = µ + Ai + εij Ai i.i.d. N(0, σ2
A),

for i = 1, . . . , t andj = 1, . . . , n. Let the total number of observations beN = nt. Here
Yij is the jth observation in theith group, theεij are independentlyN(0, σ2) distributed
(independent of theAi) and represent random variation, and theαi andAi represent effects
of the treatment groups.

(a) Briefly explain when the fixed and random effects models are appropriate. In particular,
under what circumstances would you choose to use each model?

In a one-way ANOVA, we wish to test the null hypothesis that there are no treatment
effects against the alternative that the treatment affectsthe mean response. Write down
null and alternative hypotheses for the fixed and random effects models above. Your
hypotheses should be in terms of the model parameters{αi} andσ2

A.

(b) Three experiments were carried out to study the yield of wheat in different treatment
groups. For each of the following descriptions of the treatment groups, say whether a
fixed or random effects model would be appropriate. Justify your choice in each case.

(i) To examine the effects of different fertilisers, each group was given a different brand
of fertiliser.

(ii) All groups were given the same brand of fertiliser, but from different production
batches, to check the consistency of the results from experiment (i).

(iii) In order to determine the best dosage of fertiliser to maximise cost-effectiveness,
each group was given a different selected dose of fertiliser.

(c) Define the treatment and error sums of squares to beSST =
∑t

i=1 n(Y i• − Y ••)
2 and

SSE =
∑t

i=1

∑n

j=1(Yij − Y i•)
2 and the corresponding mean squares to beMST =

SST/(t − 1) andMSE = SSE/(N − t). We estimateµ by the least squares estimator
µ̂ = Y •• andσ2 by the unbiased estimatorσ̂2 = MSE .

(i) In the fixed effects model, theαi are estimated bŷαi = Y i• − Y •• for i = 1, . . . , t.
Show that thêαi are unbiased estimators.

(ii) For the random effects model,E(MST ) = nσ2
A + σ2. Construct an unbiased esti-

mator forσ2
A and show that your estimator is unbiased.

(d) A national supermarket chain wanted to determine whether typical sales were different
in different stores. Five stores were chosen randomly from across the country. In each
store, the values of eleven randomly chosen trolley loads ofshopping were recorded.

Given that the sums of squares calculated from these data were SST = 541.17 and
SSE = 933.14, construct an ANOVA table to test the null hypothesis that there is no
significant difference in the mean spend in the stores. Assuming that a random effects
model is appropriate, estimateσ2 andσ2

A. Comment on your findings.
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2. Consider the one-way fixed effects ANOVA model

Yij = µ + αi + εij i = 1, . . . , t; j = 1, . . . , n; εij i.i.d. N(0, σ2).

If the ANOVA null hypothesisH0:αi = 0 for all i is rejected, we know that some treatments
are not equivalent. One way to investigate which treatmentsare significantly different is by
using contrasts. Define a contrast to be a linear combinationC =

∑
i ciYi• with

∑
i ci = 0.

We useC to test the hypothesisH0:
∑

i ciµi = 0 againstHA:
∑

i ciµi 6= 0, whereµi = µ+αi.

(a) Let the sum of squares for the contrastC be

SSC =
C2

n
∑

i c
2
i

.

Show that, underH0:
∑

i ciµi = 0, the distribution ofSSC is given bySSC/σ2 ∼ χ2
1.

Hint: First write down the distribution ofYi• and use this to find the distribution ofC.
Write down the expectation and variance of this distribution whenH0 is true. Then use
the fact that ifZ ∼ N(0, 1), we haveZ2 ∼ χ2

1 by definition.

(b) A manufacturer needs to outsource the production of a chemical. Before deciding on
a supplier, the manufacturer asks four laboratories to manufacture five batches each. A
numeric measurement of quality is assigned to each batch andthese values are shown
below. Given that

∑
ij y2

ij = 319.9826 and
∑

i y
2
i• = 1599.53, construct an ANOVA

table and test the null hypothesis of no difference between laboratories. Comment on
your results.

Quality measurements on batches of chemicals

Laboratory Quality measurements yi•

1 4.13 4.07 4.04 4.07 4.0520.36
2 3.86 3.85 4.08 4.11 4.0819.98
3 4.00 4.02 4.01 4.01 4.0420.08
4 3.88 3.89 3.91 3.96 3.9219.56

(c) Before gathering the data in part (b), prior experience suggested that laboratories one and
three would be equivalent, as would laboratories two and four, although laboratories one
and three would be different to laboratories two and four.

Construct a set of contrasts to test whether these suppositions are correct. Carry out your
tests using a 5% significance level. Comment on your findings.
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3. Consider the two-way fixed effects ANOVA modelYijk = µ + αi + βj + γij + εijk for
i = 1, . . . , a, j = 1, . . . , b andk = 1, . . . , n. Here,αi represents leveli of factor A, βj

represents level j of factor B,γij represents the interaction between levelsi andj of factors A
and B respectively, and theεijk are independentlyN(0, σ2) distributed representing random
variation.

(a) List a set of constraints commonly applied to the parameters{αi}, {βj} and{γij}. With
reference to the number of cells or groups in the data, explain why these (or other)
constraints must be applied.

(b) By minimising a suitable sum of squares, show thatµ is estimated bŷµ = Y ••• and
derive least squares estimates{α̂i} of the parameters{αi} for i = 1, . . . , a. Write down
without proof least squares estimates of the parameters{βj} and{γij}.

(c) A study was carried out to assess the performance of four different designs of air-
conditioning unit in different regions of the U.S.A. Two airconditioning units of each
design were installed in each region, thus obtaining a pair of observations for each com-
bination of region and design. The time to failure of the units in months are given
below. Cell sumsyij•, row sumsyi••, column sumsy•j• and the grand totaly••• are also
provided, all in italic type.

Time to failure of air-conditioning units

Region Design yi••

A B C D
Data yi1• Data yi2• Data yi3• Data yi4•

Northeast 58 49 107 35 24 59 72 60 132 61 64 125 423
Southeast 40 38 78 18 22 40 54 64 118 38 50 88 324
Northwest 63 59 122 44 16 60 81 60 141 52 48 100 423
Southwest 36 29 65 9 13 22 47 52 99 30 41 71 257
y•j• 372 181 490 384 1427

Analysing the data inR produced the following edited output, wherettf refers to the
time to failure.

> aircon.lm = lm(ttf ˜ region * design)
> anova(aircon.lm)

Df Sum Sq Mean Sq F value Pr(>F)
region a 2475.1 b 12.6502 0.0001714
design 3 c 2067.4 31.7002 5.768e-07
region:design 9 310.8 34.5 d 0.8325323
Residuals 16 1043.5 65.2

Fill in the missing values indicated by the lettersa to d and interpret the resulting table.

For any terms which you believe should be included in the model, estimate the model
parameters.

Given your parameter estimates, what are the predicted times to failure for each type of
air conditioning unit when used in the northeastern U.S.A?
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4. Consider the fixed effects nested design model

Yijk = µ + αi + βj(i) + εijk,

for i = 1, . . . , a, j = 1, . . . , b andk = 1, . . . , n. Here,αi represents leveli of factor A,βj(i)

represents level j of factor B nested within leveli of factor A, and theεijk are independently
N(0, σ2) distributed representing random variation. Assume that

∑
i αi = 0 and

∑
j βj(i) = 0

for eachi = 1, . . . , a.

(a) Let the total sum of squares and sums of squares for main groups, sub groups and errors
be defined by

SSTOT =
a∑

i=1

b∑

j=1

n∑

k=1

(Yijk − Y •••)
2, SSMG = bn

a∑

i=1

(Y i•• − Y •••)
2,

SSSG = n
a∑

i=1

b∑

j=1

(Y ij• − Y i••)
2 and SSE =

a∑

i=1

b∑

j=1

n∑

k=1

(Yijk − Y ij•)
2.

Show thatSSTOT = SSMG + SSSG + SSE. Explain what each of the sums of squares
quantities represents.

(b) Show that the error sum of squares can be written as

SSE =
a∑

i=1

b∑

j=1

n∑

k=1

Y 2
ijk − n

a∑

i=1

b∑

j=1

Y
2

ij•. (1)

Given thatE(Y 2
ijk) = (µ + αi + βj(i))

2 + σ2 andE(Y
2

ij•) = (µ + αi + βj(i))
2 + σ2/n,

use equation (1) to show thatE(SSE) = ab(n − 1)σ2.

(c) A process engineer was testing the yield of a product manufactured on three machines,
each of which has three stations at which the product is manufactured. An experiment
was conducted where three observations were taken from eachstation giving the yields
below.

Process yields

Machine 1 Machine 2 Machine 3
Station: 1 2 3 1 2 3 1 2 3

34.1 33.7 36.2 31.1 33.1 32.8 32.9 33.8 33.6
30.3 34.9 36.8 33.5 34.7 35.1 33.0 33.4 32.8
31.6 35.0 37.1 34.0 33.9 34.3 33.1 32.8 31.7

yij• 96.0 103.6 110.1 98.6 101.7 102.2 99.0 100.0 98.1
yi•• 309.7 302.5 297.1

Explain why a nested model is appropriate to analyse these data.
Given that

∑
i,j,k y2

ijk = 30688.51,
∑

ij y2
ij• = 92005.27 and

∑
i y

2
i•• = 275688.75,

construct an ANOVA table to determine whether the machines or stations have any
significant effect on the yield of the process. Comment on your results.
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5. A continuous response variableY may be modelled in terms of a continuous predictor vari-
able X by the centred simple linear regression modelY = α + β(X − X) + ε where
ε ∼ N(0, σ2). Given data{(Xi, Yi); i = 1, . . . , n}, least squares estimates ofα andβ are
α̂ = Y andβ̂ = SXY /SXX , whereSXY =

∑
i(Xi −X)(Yi − Y ) andSXX =

∑
i(Xi −X)2.

Define the residual mean square to beMSRES = (n − 2)−1
∑

i[Yi − α̂ − β̂(Xi − X)]2.

(a) An alternative matrix form for the centred simple linearregression model isy = X θ +
ε. In this matrix form,y andε are vectors of lengthn, X is ann × 2 matrix andθ is a
vector of length 2. Explain how to constructy, X, θ andε.

Show thatSXY can be written asSXY =
∑

i(Xi − X)Yi.

The estimate of the parameter vectorθ is θ̂ = (XT X)−1XT y. Show by substituting
X andy that this gives the least squares estimatesα̂ andβ̂.

(b) Show that var(θ̂) =

[
σ2/n 0

0 SXX/n

]
.

Hint: You may use the facts that var(θ̂) = E{(θ̂ − θ)(θ̂ − θ)T} andE(εεT ) = σ2I,
whereI is the identity matrix.

(c) The winning time in minutes (y) taken to run 34 Scottish hill races in 1984 were recorded,
along with the length of the races in miles (x). Given thatx = 7.66, y = 57.26,
Sxx = 1016.360, Sxy = 8739.455, andMSRES = 298, fit a linear regression model pre-
dicting winning time from the length of the race. What would you expect the winning
time to be for the Knock Hill race, which is three miles in length?

A normal QQ plot of the residuals and a plot of the residuals against the times are shown
below. Comment on the implications of these plots. If they reveal any problems with
the linear regression, indicate how you might remedy these problems.

Construct a 95% confidence interval for the expected time taken to complete a race of
zero distance. Comment on any implications of your confidence interval.
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Percentage Points of the χ2-Distribution

This table gives the percentage pointsχ2
ν(P ) for

various values ofP and degrees of freedomν, as
indicated by the figure to the right.

If X is a variable distributed asχ2 with ν de-
grees of freedom,P/100 is the probability that
X ≥ χ2

ν(P ).

For ν > 100,
√

2X is approximately normally
distributed with mean

√
2ν − 1 and unit variance.

0 χ2
u(P )

P/100

Percentage pointsP

ν 99.95 99.9 99.5 99 97.5 95 90 80
1 3.9e-07 1.6e-06 3.9e-05 1.6e-04 9.8e-04 3.9e-03 1.6e-02 6.4e-02
2 0.001 0.002 0.010 0.020 0.051 0.103 0.211 0.446
3 0.015 0.024 0.072 0.115 0.216 0.352 0.584 1.005
4 0.064 0.091 0.207 0.297 0.484 0.711 1.064 1.649
5 0.158 0.210 0.412 0.554 0.831 1.145 1.610 2.343

6 0.299 0.381 0.676 0.872 1.237 1.635 2.204 3.070
7 0.485 0.598 0.989 1.239 1.690 2.167 2.833 3.822
8 0.710 0.857 1.344 1.646 2.180 2.733 3.490 4.594
9 0.972 1.152 1.735 2.088 2.700 3.325 4.168 5.380

10 1.265 1.479 2.156 2.558 3.247 3.940 4.865 6.179

11 1.587 1.834 2.603 3.053 3.816 4.575 5.578 6.989
12 1.934 2.214 3.074 3.571 4.404 5.226 6.304 7.807
13 2.305 2.617 3.565 4.107 5.009 5.892 7.042 8.634
14 2.697 3.041 4.075 4.660 5.629 6.571 7.790 9.467
15 3.108 3.483 4.601 5.229 6.262 7.261 8.547 10.307

16 3.536 3.942 5.142 5.812 6.908 7.962 9.312 11.152
17 3.980 4.416 5.697 6.408 7.564 8.672 10.085 12.002
18 4.439 4.905 6.265 7.015 8.231 9.390 10.865 12.857
19 4.912 5.407 6.844 7.633 8.907 10.117 11.651 13.716
20 5.398 5.921 7.434 8.260 9.591 10.851 12.443 14.578

25 7.991 8.649 10.520 11.524 13.120 14.611 16.473 18.940
30 10.804 11.588 13.787 14.953 16.791 18.493 20.599 23.364
40 16.906 17.916 20.707 22.164 24.433 26.509 29.051 32.345
50 23.461 24.674 27.991 29.707 32.357 34.764 37.689 41.449
80 44.791 46.520 51.172 53.540 57.153 60.391 64.278 69.207
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Percentage Points of the χ2-Distribution

This table gives the percentage pointsχ2
ν(P ) for

various values ofP and degrees of freedomν, as
indicated by the figure to the right.

If X is a variable distributed asχ2 with ν de-
grees of freedom,P/100 is the probability that
X ≥ χ2

ν(P ).

For ν > 100,
√

2X is approximately normally
distributed with mean

√
2ν − 1 and unit variance.

0 χ2
u(P )

P/100

Percentage pointsP

ν 10 5 2.5 1 0.5 0.1 0.05
1 2.706 3.841 5.024 6.635 7.879 10.828 12.116
2 4.605 5.991 7.378 9.210 10.597 13.816 15.202
3 6.251 7.815 9.348 11.345 12.838 16.266 17.730
4 7.779 9.488 11.143 13.277 14.860 18.467 19.997
5 9.236 11.070 12.833 15.086 16.750 20.515 22.105

6 10.645 12.592 14.449 16.812 18.548 22.458 24.103
7 12.017 14.067 16.013 18.475 20.278 24.322 26.018
8 13.362 15.507 17.535 20.090 21.955 26.124 27.868
9 14.684 16.919 19.023 21.666 23.589 27.877 29.666

10 15.987 18.307 20.483 23.209 25.188 29.588 31.420

11 17.275 19.675 21.920 24.725 26.757 31.264 33.137
12 18.549 21.026 23.337 26.217 28.300 32.909 34.821
13 19.812 22.362 24.736 27.688 29.819 34.528 36.478
14 21.064 23.685 26.119 29.141 31.319 36.123 38.109
15 22.307 24.996 27.488 30.578 32.801 37.697 39.719

16 23.542 26.296 28.845 32.000 34.267 39.252 41.308
17 24.769 27.587 30.191 33.409 35.718 40.790 42.879
18 25.989 28.869 31.526 34.805 37.156 42.312 44.434
19 27.204 30.144 32.852 36.191 38.582 43.820 45.973
20 28.412 31.410 34.170 37.566 39.997 45.315 47.498

25 34.382 37.652 40.646 44.314 46.928 52.620 54.947
30 40.256 43.773 46.979 50.892 53.672 59.703 62.162
40 51.805 55.758 59.342 63.691 66.766 73.402 76.095
50 63.167 67.505 71.420 76.154 79.490 86.661 89.561
80 96.578 101.879 106.629 112.329 116.321 124.839 128.261
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Percentage Points of the t-Distribution

This table gives the percentage pointstν(P ) for
various values ofP and degrees of freedomν, as
indicated by the figure to the right.

The lower percentage points are given by sym-
metry as−tu(P ), and the probability that|t| ≥
tu(P ) is 2P/100.

0 tν(P )

P/100

Percentage pointsP

ν 10 5 2.5 1 0.5 0.1 0.05
1 3.078 6.314 12.706 31.821 63.657 318.309 636.619
2 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.893 6.869

6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587

11 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073

16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
25 1.316 1.708 2.060 2.485 2.787 3.450 3.725
30 1.310 1.697 2.042 2.457 2.750 3.385 3.646

40 1.303 1.684 2.021 2.423 2.704 3.307 3.551
50 1.299 1.676 2.009 2.403 2.678 3.261 3.496
70 1.294 1.667 1.994 2.381 2.648 3.211 3.435

100 1.290 1.660 1.984 2.364 2.626 3.174 3.390
∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291
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5 Percent Points of the F -Distribution

This table gives the percentage pointsFν1,ν2
(P )

for P = 0.05 and degrees of freedomν1, ν2, as
indicated by the figure to the right.

The lower percentage points, that is the values
F ′

ν1,ν2
(P ) such that the probability thatF ≤

F ′

ν1,ν2
(P ) is equal toP/100, may be found using

the formula

F ′

ν1,ν2
(P ) = 1/Fν1,ν2

(P ) 0 F (P )

P/100

ν1

ν2 1 2 3 4 5 6 12 24 ∞

2 18.513 19.000 19.164 19.247 19.296 19.330 19.413 19.454 19.496
3 10.128 9.552 9.277 9.117 9.013 8.941 8.745 8.639 8.526
4 7.709 6.944 6.591 6.388 6.256 6.163 5.912 5.774 5.628
5 6.608 5.786 5.409 5.192 5.050 4.950 4.678 4.527 4.365

6 5.987 5.143 4.757 4.534 4.387 4.284 4.000 3.841 3.669
7 5.591 4.737 4.347 4.120 3.972 3.866 3.575 3.410 3.230
8 5.318 4.459 4.066 3.838 3.687 3.581 3.284 3.115 2.928
9 5.117 4.256 3.863 3.633 3.482 3.374 3.073 2.900 2.707

10 4.965 4.103 3.708 3.478 3.326 3.217 2.913 2.737 2.538

11 4.844 3.982 3.587 3.357 3.204 3.095 2.788 2.609 2.404
12 4.747 3.885 3.490 3.259 3.106 2.996 2.687 2.505 2.296
13 4.667 3.806 3.411 3.179 3.025 2.915 2.604 2.420 2.206
14 4.600 3.739 3.344 3.112 2.958 2.848 2.534 2.349 2.131
15 4.543 3.682 3.287 3.056 2.901 2.790 2.475 2.288 2.066

16 4.494 3.634 3.239 3.007 2.852 2.741 2.425 2.235 2.010
17 4.451 3.592 3.197 2.965 2.810 2.699 2.381 2.190 1.960
18 4.414 3.555 3.160 2.928 2.773 2.661 2.342 2.150 1.917
19 4.381 3.522 3.127 2.895 2.740 2.628 2.308 2.114 1.878
20 4.351 3.493 3.098 2.866 2.711 2.599 2.278 2.082 1.843

25 4.242 3.385 2.991 2.759 2.603 2.490 2.165 1.964 1.711
30 4.171 3.316 2.922 2.690 2.534 2.421 2.092 1.887 1.622
40 4.085 3.232 2.839 2.606 2.449 2.336 2.003 1.793 1.509
50 4.034 3.183 2.790 2.557 2.400 2.286 1.952 1.737 1.438

100 3.936 3.087 2.696 2.463 2.305 2.191 1.850 1.627 1.283

∞ 3.841 2.996 2.605 2.372 2.214 2.099 1.752 1.517 1.002
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1 Percent Points of the F -Distribution

This table gives the percentage pointsFν1,ν2
(P )

for P = 0.01 and degrees of freedomν1, ν2, as
indicated by the figure to the right.

The lower percentage points, that is the values
F ′

ν1,ν2
(P ) such that the probability thatF ≤

F ′

ν1,ν2
(P ) is equal toP/100, may be found using

the formula

F ′

ν1,ν2
(P ) = 1/Fν1,ν2

(P ) 0 F (P )

P/100

ν1

ν2 1 2 3 4 5 6 12 24 ∞

2 98.503 99.000 99.166 99.249 99.299 99.333 99.416 99.458 99.499
3 34.116 30.817 29.457 28.710 28.237 27.911 27.052 26.598 26.125
4 21.198 18.000 16.694 15.977 15.522 15.207 14.374 13.929 13.463
5 16.258 13.274 12.060 11.392 10.967 10.672 9.888 9.466 9.020

6 13.745 10.925 9.780 9.148 8.746 8.466 7.718 7.313 6.880
7 12.246 9.547 8.451 7.847 7.460 7.191 6.469 6.074 5.650
8 11.259 8.649 7.591 7.006 6.632 6.371 5.667 5.279 4.859
9 10.561 8.022 6.992 6.422 6.057 5.802 5.111 4.729 4.311

10 10.044 7.559 6.552 5.994 5.636 5.386 4.706 4.327 3.909

11 9.646 7.206 6.217 5.668 5.316 5.069 4.397 4.021 3.602
12 9.330 6.927 5.953 5.412 5.064 4.821 4.155 3.780 3.361
13 9.074 6.701 5.739 5.205 4.862 4.620 3.960 3.587 3.165
14 8.862 6.515 5.564 5.035 4.695 4.456 3.800 3.427 3.004
15 8.683 6.359 5.417 4.893 4.556 4.318 3.666 3.294 2.868

16 8.531 6.226 5.292 4.773 4.437 4.202 3.553 3.181 2.753
17 8.400 6.112 5.185 4.669 4.336 4.102 3.455 3.084 2.653
18 8.285 6.013 5.092 4.579 4.248 4.015 3.371 2.999 2.566
19 8.185 5.926 5.010 4.500 4.171 3.939 3.297 2.925 2.489
20 8.096 5.849 4.938 4.431 4.103 3.871 3.231 2.859 2.421

25 7.770 5.568 4.675 4.177 3.855 3.627 2.993 2.620 2.169
30 7.562 5.390 4.510 4.018 3.699 3.473 2.843 2.469 2.006
40 7.314 5.179 4.313 3.828 3.514 3.291 2.665 2.288 1.805
50 7.171 5.057 4.199 3.720 3.408 3.186 2.562 2.183 1.683

100 6.895 4.824 3.984 3.513 3.206 2.988 2.368 1.983 1.427

∞ 6.635 4.605 3.782 3.319 3.017 2.802 2.185 1.791 1.003

11 END


